Матроид Вамоса — различия между версиями
(→Задание матроида) |
|||
Строка 6: | Строка 6: | ||
Пусть <tex> E = \{1, 2, 3, 4, 5, 6, 7, 8\}</tex>. Матроид Вамоса <tex>V</tex> удобно задать, назвав все его [[Определение_матроида | '''зависимые''']] множества: это все подмножества <tex>E</tex>, в которых не менее пяти элементов, а также <tex>\{1, 2, 5, 6\}, \{1, 2, 7, 8\}, \{3, 4, 5, 6\}, \{3, 4, 7, 8\}, \{5, 6, 7, 8\}</tex>. | Пусть <tex> E = \{1, 2, 3, 4, 5, 6, 7, 8\}</tex>. Матроид Вамоса <tex>V</tex> удобно задать, назвав все его [[Определение_матроида | '''зависимые''']] множества: это все подмножества <tex>E</tex>, в которых не менее пяти элементов, а также <tex>\{1, 2, 5, 6\}, \{1, 2, 7, 8\}, \{3, 4, 5, 6\}, \{3, 4, 7, 8\}, \{5, 6, 7, 8\}</tex>. | ||
{{Теорема | {{Теорема | ||
− | |statement= | + | |statement=Заданная конструкция является матроидом. |
|proof= | |proof= | ||
− | + | Выполнение первых двух аксиом очевидно. В проверке нуждается лишь тот факт, что если <tex>A</tex> и <tex>B</tex> независимые множества и <tex>|B| = 3</tex>, <tex>|A| = 4</tex>, то в <tex>A</tex> найдется такой элемент <tex>e</tex>, что <tex>B \cup \{e\}</tex> {{---}} независимое множество. Когда <tex>B \subset A</tex>, это очевидно. В противном же случае множество <tex> A \setminus B</tex> содержит по меньшей мере два различных элемента. Обозначим их через <tex>e_1</tex> и <tex>e_2</tex>. Теперь осталось заметить, что из множеств <tex>B \cup \{e_1\}</tex> и <tex>B \cup \{e_2\}</tex> хотя бы одно независимое, так как по условию нет двух зависимых множеств из четырех элементов, отличающихся одним элементом. | |
}} | }} | ||
Версия 16:59, 16 июня 2014
Матроид Вамоса или куб Вамоса — это матроид над восьмиэлементным множеством, который не изоморфен матричному ни над каким полем. Он назван в честь английского математика Питера Вамоса (Peter Vámos), который первым описал его в неопубликованной рукописи в 1968.
Содержание
Задание матроида
Пусть зависимые множества: это все подмножества , в которых не менее пяти элементов, а также .
. Матроид Вамоса удобно задать, назвав все егоТеорема: |
Заданная конструкция является матроидом. |
Доказательство: |
Выполнение первых двух аксиом очевидно. В проверке нуждается лишь тот факт, что если | и независимые множества и , , то в найдется такой элемент , что — независимое множество. Когда , это очевидно. В противном же случае множество содержит по меньшей мере два различных элемента. Обозначим их через и . Теперь осталось заметить, что из множеств и хотя бы одно независимое, так как по условию нет двух зависимых множеств из четырех элементов, отличающихся одним элементом.
Свойства
- Все циклы матроида Вамоса имеют размер по меньшей мере равный его рангу (максимальный размер независимого множества).
- Матроид Вамоса изоморфен своему двойственному матроиду. Однако он не самодвойственен, так как это требует нетривиальную перестановку элементов.
- Многочлен Татта матроида Вамоса равен
- Матроид Вамоса не является матричным.
Матроид Вамоса не представим ни над каким полем
Теорема: |
Матроид Вамоса не представим ни над каким полем. Это значит, что не существует векторного пространства и системы из восьми векторов в нем, таких что матроид линейной независимости этих векторов изоморфен матроиду Вамоса. |
Доказательство: |
Предположим, что существует изоморфный векторный матроид , где , и для каждого вектор соответствует элементу матроида Вамоса. Множество является базисом . Запишем координаты каждого вектора в этом базисе: . Для дальнейшего нам понадобятся также векторы и , где . Ввиду линейной зависимости векторов получаем равенство нулю определителя, составленного из координат этих векторов:
отсюда
то есть векторы и линейно зависимы. Заметим, что вектор ненулевой (иначе были бы линейно зависимыми векторы , а у нас любые три вектора линейно независимые) . Поэтому для некоторого скаляра (то есть элемента числового поля, над которым рассматривается линейное пространство) имеет место равенство . Точно так же из линейной зависимости четвёрок векторов получаем соответственно равенства , где греческими буквами обозначены некоторые скаляры.Наконец, используем линейную зависимость векторов . С помощью найденных соотношений будем преобразовывать определитель, составленный из координат этих векторов (при этом вместо строк определителя для наглядности записываем поначалу соответствующие векторы):
Теперь заметим, что то есть векторы (в противном случае линейно зависимыми будут векторы и , а (иначе линейно зависимы векторы и ) . Поэтому равен нулю один из определителей или , например - первый из них. Но тогда линейно зависимы, что противоречит условию. |