Теорема Радо-Эдмондса (жадный алгоритм) — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(merge)
Строка 23: Строка 23:
 
}}
 
}}
  
 +
== Жадный алгоритм поиска базы минимального веса ==
 +
 +
{{Теорема
 +
|about=
 +
жадный алгоритм поиска базы минимального веса
 +
|statement=
 +
Пусть на носителе матроида <tex>M = \langle X, I \rangle</tex> задана весовая функция <tex>\omega: X \to \mathbb R</tex>. Для любого <tex>A \subset X</tex> выполнено: <tex>\omega(A) = \sum\limits _{x \in A} \omega(x)</tex>. Тогда база минимального веса матроида <tex>M</tex> ищется жадно.
 +
|proof=
 +
Псевдокод алгоритма:
 +
<tex>sort(X)</tex>    // сортируем элементы по возрастанию веса
 +
<tex>B \leftarrow \varnothing</tex>
 +
'''for''' <tex>i \leftarrow 0</tex> '''to''' <tex>|X|-1</tex> '''do'''
 +
  '''if''' <tex>B \cup X[i] \in I</tex>
 +
    <tex>B \leftarrow B \cup X[i]</tex>
 +
Рассмотрим шаг алгоритма, когда мы пытаемся добавить элемент <tex>X[i]</tex>. Заметим, что если его можно добавить с сохранением независимости множества <tex>B</tex>, то это элемент минимального веса не из <tex>B</tex>, который можно добавить (при условии сохранения независимости <tex>B</tex> при добавлении). В самом деле, пусть <tex>X[j]</tex> — элемент минимального веса не из <tex>B</tex>, который можно добавить к <tex>B</tex> с сохранением его независимости, тогда <tex>j<i</tex>. Но тогда он уже был бы добавлен на <tex>j</tex>-ом шаге алгоритма.
 +
 +
Понятно, что все базы имеют одинаковую мощность (иначе в меньшую можно было бы добавить элемент из большей по аксиоме матроидов, что противоречит определению базы). По [[Теорема Радо-Эдмондса (жадный алгоритм)|теореме Радо-Эдмондса]] множество минимального веса, имеющее мощность базы, (то есть база минимального веса) ищется последовательным добавлением в изначально пустое множество элементов минимального веса из <tex>X</tex> так, чтобы после каждого добавления множество оставалось независимым.
 +
 +
Алгоритм работает за <tex>O(|X| \log(|X|))</tex>. На сортировку элементов из <tex>X</tex> по возрастанию весов уходит <tex>O(|X| \log(|X|))</tex> и <tex>O(|X|)</tex> шагов цикла, каждый из которых работает <tex>O(1)</tex> времени (если считать, что проверка множества на независимость происходит за <tex>O(1)</tex>).
 +
}}
 +
 +
== Примеры задач ==
 +
 +
== Источники информации ==
 +
* [[wikipedia:ru:Жадный алгоритм Радо — Эдмондса | Википедия — Жадный алгоритм Радо-Эдмондса]]
 +
* [http://www.mathematik.hu-berlin.de/~wilhelm/greedy-vortrag.pdf| Greedy Algorithm And Edmonds Matroid Intersection Algorithm]
  
 
[[Категория:Алгоритмы и структуры данных]]
 
[[Категория:Алгоритмы и структуры данных]]
 
[[Категория:Матроиды]]
 
[[Категория:Матроиды]]

Версия 18:39, 17 июня 2014

Теорема (Радо-Эдмондса):
На носителе матроида [math]M = \langle X, I \rangle[/math] задана весовая функция [math]\omega: X \to \mathbb R[/math]. Пусть [math]A \in I[/math] — множество минимального веса среди независимых подмножеств [math]X[/math] мощности [math]k[/math]. Возьмем [math]x: A \cup x \in I[/math], [math]x \notin A[/math], [math]\omega (x)[/math] — минимальна.
Тогда [math]A \cup x[/math] — множество минимального веса среди независимых подмножеств [math]X[/math] мощности [math]k + 1[/math].
Доказательство:
[math]\triangleright[/math]

Рассмотрим [math]B \in I[/math] — множество минимального веса среди независимых подмножеств [math]X[/math] мощности [math]k + 1[/math].

Из определения матроида: [math]\exists y \in B\setminus A : A \cup y \in I[/math].

Тогда верны два неравенства:
[math]\omega (A \cup y) = \omega (A) + \omega (y) \ge \omega (B) \Rightarrow \omega (A) \ge \omega (B) - \omega (y)[/math],
[math]\omega (B \setminus y) = \omega (B) - \omega (y) \ge \omega (A)[/math].

Заметим, что величина [math]\omega (A)[/math] с двух сторон ограничивает величину [math]\omega (B) - \omega (y)[/math]. Значит, эти величины равны: [math]\omega (A) = \omega (B) - \omega (y) \Rightarrow \omega (A) + \omega (y) = \omega (B)[/math].

Следовательно, [math]\omega (A \cup y) = \omega (A) + \omega (y) = \omega (B)[/math].

Таким образом получаем, что если объединить множество [math]A[/math] с [math]x[/math] — минимальным из таких, что [math]A \cup x \in I[/math], — то получим множество минимального веса среди независимых подмножеств [math]X[/math] мощности [math]k + 1[/math].
[math]\triangleleft[/math]

Жадный алгоритм поиска базы минимального веса

Теорема (жадный алгоритм поиска базы минимального веса):
Пусть на носителе матроида [math]M = \langle X, I \rangle[/math] задана весовая функция [math]\omega: X \to \mathbb R[/math]. Для любого [math]A \subset X[/math] выполнено: [math]\omega(A) = \sum\limits _{x \in A} \omega(x)[/math]. Тогда база минимального веса матроида [math]M[/math] ищется жадно.
Доказательство:
[math]\triangleright[/math]

Псевдокод алгоритма:

[math]sort(X)[/math]    // сортируем элементы по возрастанию веса
[math]B \leftarrow \varnothing[/math]
for [math]i \leftarrow 0[/math] to [math]|X|-1[/math] do
  if [math]B \cup X[i] \in I[/math]
    [math]B \leftarrow B \cup X[i][/math]

Рассмотрим шаг алгоритма, когда мы пытаемся добавить элемент [math]X[i][/math]. Заметим, что если его можно добавить с сохранением независимости множества [math]B[/math], то это элемент минимального веса не из [math]B[/math], который можно добавить (при условии сохранения независимости [math]B[/math] при добавлении). В самом деле, пусть [math]X[j][/math] — элемент минимального веса не из [math]B[/math], который можно добавить к [math]B[/math] с сохранением его независимости, тогда [math]j\lt i[/math]. Но тогда он уже был бы добавлен на [math]j[/math]-ом шаге алгоритма.

Понятно, что все базы имеют одинаковую мощность (иначе в меньшую можно было бы добавить элемент из большей по аксиоме матроидов, что противоречит определению базы). По теореме Радо-Эдмондса множество минимального веса, имеющее мощность базы, (то есть база минимального веса) ищется последовательным добавлением в изначально пустое множество элементов минимального веса из [math]X[/math] так, чтобы после каждого добавления множество оставалось независимым.

Алгоритм работает за [math]O(|X| \log(|X|))[/math]. На сортировку элементов из [math]X[/math] по возрастанию весов уходит [math]O(|X| \log(|X|))[/math] и [math]O(|X|)[/math] шагов цикла, каждый из которых работает [math]O(1)[/math] времени (если считать, что проверка множества на независимость происходит за [math]O(1)[/math]).
[math]\triangleleft[/math]

Примеры задач

Источники информации