Теорема Радо-Эдмондса (жадный алгоритм) — различия между версиями
Firespace (обсуждение | вклад) |
Firespace (обсуждение | вклад) |
||
Строка 36: | Строка 36: | ||
sort(X) <span style="color:green">// сортируем элементы по возрастанию веса</span> | sort(X) <span style="color:green">// сортируем элементы по возрастанию веса</span> | ||
<tex>B \leftarrow \varnothing</tex> | <tex>B \leftarrow \varnothing</tex> | ||
− | '''for''' <tex>i \leftarrow 0</tex> '''to''' <tex>n-1</tex> | + | '''for''' <tex>i \leftarrow 0</tex> '''to''' <tex>n-1</tex> |
'''if''' <tex>B \cup X[i] \in I</tex> | '''if''' <tex>B \cup X[i] \in I</tex> | ||
<tex>B \leftarrow B \cup X[i]</tex> | <tex>B \leftarrow B \cup X[i]</tex> | ||
− | Рассмотрим шаг алгоритма, | + | Рассмотрим шаг алгоритма, на котором мы пытаемся добавить элемент <tex>X[i]</tex>. Заметим, что если при его добавлении сохраняется независимость множества <tex>B</tex>, то это элемент минимального веса не из <tex>B</tex>. В самом деле, пусть <tex>X[j]</tex> — элемент минимального веса не из <tex>B</tex>, который можно добавить к <tex>B</tex> с сохранением его независимости, тогда <tex>j<i</tex>. Но тогда он уже был бы добавлен на <tex>j</tex>-ом шаге алгоритма. |
Понятно, что все базы имеют одинаковую мощность (иначе в меньшую можно было бы добавить элемент из большей по аксиоме матроидов, что противоречит определению базы). По [[Теорема Радо-Эдмондса (жадный алгоритм)|теореме Радо-Эдмондса]] множество минимального веса, имеющее мощность базы, (то есть база минимального веса) ищется последовательным добавлением в изначально пустое множество элементов минимального веса из <tex>X</tex> так, чтобы после каждого добавления множество оставалось независимым. | Понятно, что все базы имеют одинаковую мощность (иначе в меньшую можно было бы добавить элемент из большей по аксиоме матроидов, что противоречит определению базы). По [[Теорема Радо-Эдмондса (жадный алгоритм)|теореме Радо-Эдмондса]] множество минимального веса, имеющее мощность базы, (то есть база минимального веса) ищется последовательным добавлением в изначально пустое множество элементов минимального веса из <tex>X</tex> так, чтобы после каждого добавления множество оставалось независимым. | ||
− | Алгоритм работает за <tex>O( | + | Алгоритм работает за <tex>O(n \log n + mn)</tex>. На сортировку элементов из <tex>X</tex> по возрастанию весов уходит <tex>O(n \log n)</tex> и <tex>O(n)</tex> шагов цикла, каждый из которых работает <tex>O(m)</tex> времени. Однако, если считать, что проверка множества на независимость происходит за <tex>O(1)</tex>, асимптотика алгоритма будет <tex>O(n \log n)</tex> |
}} | }} | ||
− | == | + | == Простейшие примеры задач == |
* [http://informatics.mccme.ru/mod/statements/view.php?id=3580| informatics:mccme:ru:Остовное дерево] | * [http://informatics.mccme.ru/mod/statements/view.php?id=3580| informatics:mccme:ru:Остовное дерево] | ||
Версия 21:44, 17 июня 2014
Содержание
Теорема Радо-Эдмондса
Теорема (Радо-Эдмондса): |
На носителе матроида задана весовая функция . Пусть — множество минимального веса среди независимых подмножеств мощности . Возьмем , , — минимальна.
Тогда — множество минимального веса среди независимых подмножеств мощности . |
Доказательство: |
Рассмотрим — множество минимального веса среди независимых подмножеств мощности .Из определения матроида: .Тогда верны два неравенства:
Заметим, что величина с двух сторон ограничивает величину . Значит, эти величины равны: .Следовательно, Таким образом получаем, что если объединить множество . с — минимальным из таких, что , — то получим множество минимального веса среди независимых подмножеств мощности . |
Жадный алгоритм поиска базы минимального веса
Теорема (жадный алгоритм поиска базы минимального веса): |
Пусть на носителе матроида задана весовая функция . Для любого выполнено: . Тогда база минимального веса матроида ищется жадно. |
Доказательство: |
Пусть ¸ а — время, за которое выполняется проверка множества на независимость.Псевдокод алгоритма: sort(X) // сортируем элементы по возрастанию веса for to if Рассмотрим шаг алгоритма, на котором мы пытаемся добавить элемент . Заметим, что если при его добавлении сохраняется независимость множества , то это элемент минимального веса не из . В самом деле, пусть — элемент минимального веса не из , который можно добавить к с сохранением его независимости, тогда . Но тогда он уже был бы добавлен на -ом шаге алгоритма.Понятно, что все базы имеют одинаковую мощность (иначе в меньшую можно было бы добавить элемент из большей по аксиоме матроидов, что противоречит определению базы). По теореме Радо-Эдмондса множество минимального веса, имеющее мощность базы, (то есть база минимального веса) ищется последовательным добавлением в изначально пустое множество элементов минимального веса из так, чтобы после каждого добавления множество оставалось независимым. Алгоритм работает за . На сортировку элементов из по возрастанию весов уходит и шагов цикла, каждый из которых работает времени. Однако, если считать, что проверка множества на независимость происходит за , асимптотика алгоритма будет |