Алгоритм Крочемора — различия между версиями
(→Упрощенный алгоритм) |
(→Оптимизация) |
||
Строка 70: | Строка 70: | ||
Декомпозицию каждой последовательности можно получить косвенным путем, а не путем прямых вычислений. Идея такого подхода состоит в следующем: | Декомпозицию каждой последовательности можно получить косвенным путем, а не путем прямых вычислений. Идея такого подхода состоит в следующем: | ||
на каждом уровне <tex>l</tex> выполняется непосредственная декомпозиция каждой последовательности <tex>c^{l}_j</tex>. Более точно, если <tex>c^{l}_j = \langle p_1, p_2, \ldots , p_r \rangle</tex>, то необходимо проверить совпадение букв <tex>s[p_1 + l], s[p_2 + l], \ldots, s[p_r + l]</tex>, и, если какие-либо пары букв <tex>s[p_i + l]</tex> и <tex>s[p_j + l]</tex> равны, то <tex>p_i</tex> и <tex>p_j</tex> помещаются в одну и ту же последовательность на уровне <tex>l + 1</tex>. | на каждом уровне <tex>l</tex> выполняется непосредственная декомпозиция каждой последовательности <tex>c^{l}_j</tex>. Более точно, если <tex>c^{l}_j = \langle p_1, p_2, \ldots , p_r \rangle</tex>, то необходимо проверить совпадение букв <tex>s[p_1 + l], s[p_2 + l], \ldots, s[p_r + l]</tex>, и, если какие-либо пары букв <tex>s[p_i + l]</tex> и <tex>s[p_j + l]</tex> равны, то <tex>p_i</tex> и <tex>p_j</tex> помещаются в одну и ту же последовательность на уровне <tex>l + 1</tex>. | ||
− | |||
Заметим, что декомпозицию можно выполнить, основываясь не на разбиваемой последовательности, а на последовательностях, относительно которых будут разбиваться другие последовательности. | Заметим, что декомпозицию можно выполнить, основываясь не на разбиваемой последовательности, а на последовательностях, относительно которых будут разбиваться другие последовательности. | ||
− | |||
Для каждой позиции <tex>p_i > 1</tex> известно, что подстрока <tex>s[p_i - 1 \ldots p_i + l - 1]</tex> (длиной <tex>l + 1</tex>) относится к некоторой последовательности <tex>c^{l + 1}_{j'}</tex> на уровне <tex>l + 1</tex>. Поскольку последовательность <tex>c^{l}_{j}</tex> соответствует уникальной подстроке строки <tex>s</tex>, то каждая такая последовательность <tex>c^{l + 1}_{j'}</tex> должна формироваться из тех же позиций <tex>p_{i_1}, p_{i_2}, \ldots , p_{i_k}</tex> последовательности <tex>c^{l}_{j}</tex>, которые определяют класс эквивалентности | Для каждой позиции <tex>p_i > 1</tex> известно, что подстрока <tex>s[p_i - 1 \ldots p_i + l - 1]</tex> (длиной <tex>l + 1</tex>) относится к некоторой последовательности <tex>c^{l + 1}_{j'}</tex> на уровне <tex>l + 1</tex>. Поскольку последовательность <tex>c^{l}_{j}</tex> соответствует уникальной подстроке строки <tex>s</tex>, то каждая такая последовательность <tex>c^{l + 1}_{j'}</tex> должна формироваться из тех же позиций <tex>p_{i_1}, p_{i_2}, \ldots , p_{i_k}</tex> последовательности <tex>c^{l}_{j}</tex>, которые определяют класс эквивалентности | ||
<tex>s[p_{i_1} - 1] = s[p_{i_2} - 1] = \ldots = s[p_{i_k} - 1]</tex>. | <tex>s[p_{i_1} - 1] = s[p_{i_2} - 1] = \ldots = s[p_{i_k} - 1]</tex>. | ||
− | |||
Таким образом, декомпозицию на уровне <tex>l + 1</tex> можно выполнить косвенным путем, рассматривая каждую последовательность уровня <tex>l</tex> с позиции, находящейся на <tex>1</tex> левее от начальной позиции этой последовательности. | Таким образом, декомпозицию на уровне <tex>l + 1</tex> можно выполнить косвенным путем, рассматривая каждую последовательность уровня <tex>l</tex> с позиции, находящейся на <tex>1</tex> левее от начальной позиции этой последовательности. | ||
− | |||
{{Лемма | {{Лемма | ||
Строка 97: | Строка 93: | ||
Заметим, что если последовательность <tex>c^l_j</tex> разбивается на подпоследовательности <tex>(c^{l+1}_1, c^{l+1}_2, \ldots, c^{l+1}_q)</tex>, то каждая малая последовательность <tex>c^{l+1}_{j'}</tex> удовлетворяет условию <tex>c^{l+1}_{j'} \leqslant {c^{l}_{j} \over 2}</tex>. Другими словами, при <tex>l \geqslant 2</tex> каждая малая последовательность не превышает половины размера своей исходной последовательности. Поскольку для <tex>l - 1</tex> начальная малая последовательность может содержать не более n позиций, то из этого следует, что ни одна из позиций не может входить в больше, чем <tex>\log_2(n+1)</tex> малых последовательностей. | Заметим, что если последовательность <tex>c^l_j</tex> разбивается на подпоследовательности <tex>(c^{l+1}_1, c^{l+1}_2, \ldots, c^{l+1}_q)</tex>, то каждая малая последовательность <tex>c^{l+1}_{j'}</tex> удовлетворяет условию <tex>c^{l+1}_{j'} \leqslant {c^{l}_{j} \over 2}</tex>. Другими словами, при <tex>l \geqslant 2</tex> каждая малая последовательность не превышает половины размера своей исходной последовательности. Поскольку для <tex>l - 1</tex> начальная малая последовательность может содержать не более n позиций, то из этого следует, что ни одна из позиций не может входить в больше, чем <tex>\log_2(n+1)</tex> малых последовательностей. | ||
}} | }} | ||
− | |||
Поскольку строка <tex>s</tex> содержит <tex>n</tex> позиций, то из предыдущей леммы следует, что всего в малых последовательностях на всех уровнях содержится <tex>O(n \log n)</tex> позиций. Таким образом, если время обработки последовательностей на каждом уровне <tex>l</tex> пропорционально количеству элементов в малых последовательностях этого уровня, то полный процесс декомпозиции будет выполнен за <tex>O(n \log n)</tex>, чего мы и хотели получить. | Поскольку строка <tex>s</tex> содержит <tex>n</tex> позиций, то из предыдущей леммы следует, что всего в малых последовательностях на всех уровнях содержится <tex>O(n \log n)</tex> позиций. Таким образом, если время обработки последовательностей на каждом уровне <tex>l</tex> пропорционально количеству элементов в малых последовательностях этого уровня, то полный процесс декомпозиции будет выполнен за <tex>O(n \log n)</tex>, чего мы и хотели получить. |
Версия 08:46, 18 июня 2014
Определение: |
Тандемным повтором (англ. 'tandem repeat') в строке называются два вхождения какой-либо подстроки подряд. Иными словами, тандемный повтор описывается парой индексов | такими, что подстрока — это две одинаковые строки, записанные подряд
Алгоритм Крочемора (англ. 'crochemore algorithm') — алгоритм на строках, позволяющий найти все тандемные повторы в строке за
Алгоритм
Разобьем описание алгоритма на две части: сначала покажем упрощенный алгоритм, работающий за
, а затем попытаемся его оптимизировать доУпрощенный алгоритм
Рассмотрим следующую строку Фиббоначи:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
a | b | a | a | b | a | b | a | a | b | a | a | b | $ |
Будем вычислять все повторяющиеся подстроки длины для всех , таких что . Зная эти данные, мы автоматически находим все тандемные повторы.
Предположим, что в строке
вычислены последовательности позиций, в которых встречаются одинаковые символы:<1, 3, 4, 6, 8, 9, 11, 12> | <2, 5, 7, 10, 13> | <14> | |
a | b | $ |
Если нам заранее известен алфавит, и он индексирован, то мы можем выполнить данное вычисление за
.Далее для
мы хотим найти все повторяющиеся подстроки длины . Поскольку повторяющиеся подстроки длины будут иметь общий префикс длиной , то вычисления уровня должны привести к последовательностям, которые будут подпоследовательностями последовательностей, вычисленных на уровне . Другими словами, разбиение на уровне — декомпозиция разбиения на уровне :Последовательная декомпозиция строки | |||||
---|---|---|---|---|---|
<1, 4, 6, 9, 12> | <3, 8, 11> | <2, 5, 7, 10> | <13> | ||
ab | aa | ba | b$ | ||
<1, 4, 6, 9> | <12> | <3, 8, 11> | <2, 7, 10> | <5> | |
aba | aa$ | aab | baa | bab | |
<1, 6, 9> | <4> | <3, 8> | <11> | <2, 7, 10> | |
abaa | abab | aaba | aab$ | baab | |
<1, 6, 9> | <3> | <8> | <2, 7> | <10> | |
abaab | aabab | aabaa | baaba | baab$ | |
<1, 6> | <9> | <2> | <7> | ||
abaaba | abaab$ | baabab | baabaa | ||
<1> | <6> | ||||
abaabab | abaabaa |
Если реализовывать процесс декомпозиции "наивно", то поучаем сложность
Оптимизация
Декомпозицию каждой последовательности можно получить косвенным путем, а не путем прямых вычислений. Идея такого подхода состоит в следующем: на каждом уровне
выполняется непосредственная декомпозиция каждой последовательности . Более точно, если , то необходимо проверить совпадение букв , и, если какие-либо пары букв и равны, то и помещаются в одну и ту же последовательность на уровне .Заметим, что декомпозицию можно выполнить, основываясь не на разбиваемой последовательности, а на последовательностях, относительно которых будут разбиваться другие последовательности.
Для каждой позиции
известно, что подстрока (длиной ) относится к некоторой последовательности на уровне . Поскольку последовательность соответствует уникальной подстроке строки , то каждая такая последовательность должна формироваться из тех же позиций последовательности , которые определяют класс эквивалентности .Таким образом, декомпозицию на уровне
можно выполнить косвенным путем, рассматривая каждую последовательность уровня с позиции, находящейся на левее от начальной позиции этой последовательности.Лемма: |
В каждом наборе последовательностей, порожденных одной последовательностью уровня , всегда можно исключить использование одной из них для декомпозиции последовательностей на уровне |
Доказательство: |
TBA |
Определение: |
В декомпозиции последовательности | на последовательности назовем одну последовательность с наибольшим количеством элементов большой, а остальные последовательности - малыми. Для все последовательности будем считать малыми.
Лемма: |
Предположим, что декомпозиция последовательностей, соответствующих произвольной строке , выполняется для уровней , где — наименьший уровень, на котором каждая последовательность содержит единственную позицию. Тогда каждая позиция строки входит в малые последовательности раз |
Доказательство: |
Заметим, что если последовательность | разбивается на подпоследовательности , то каждая малая последовательность удовлетворяет условию . Другими словами, при каждая малая последовательность не превышает половины размера своей исходной последовательности. Поскольку для начальная малая последовательность может содержать не более n позиций, то из этого следует, что ни одна из позиций не может входить в больше, чем малых последовательностей.
Поскольку строка
содержит позиций, то из предыдущей леммы следует, что всего в малых последовательностях на всех уровнях содержится позиций. Таким образом, если время обработки последовательностей на каждом уровне пропорционально количеству элементов в малых последовательностях этого уровня, то полный процесс декомпозиции будет выполнен за , чего мы и хотели получить.Псевдокод
crochemore()1 Вычислим все последовательности на уровне 1 и пометим их как малые while малая последовательность на уровне : out кратные строки с периодом l Вычислим декомпозицию последовательностей уровня , используя только малые последовательности l++ Найдем малые последовательности на уровне
Источники информации
- Билл Смит Методы и алгоритмы вычислений на строках. Пер. с англ.— М.:Издательский дом "Вильямс", 2006. ISBN 5-8459-1081-1
- E-maxx — Поиск всех тандемных повторов в строке. Алгоритм Мейна-Лоренца