Симметричное отношение — различия между версиями
(→Ссылки) |
м (→Источники) |
||
Строка 25: | Строка 25: | ||
** отношение "наличие общего свойства" | ** отношение "наличие общего свойства" | ||
− | ==Источники== | + | ==Источники информации== |
* [http://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BC%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%BD%D0%BE%D0%B5_%D0%BE%D1%82%D0%BD%D0%BE%D1%88%D0%B5%D0%BD%D0%B8%D0%B5 Wikipedia | Симметричное отношение] | * [http://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BC%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%BD%D0%BE%D0%B5_%D0%BE%D1%82%D0%BD%D0%BE%D1%88%D0%B5%D0%BD%D0%B8%D0%B5 Wikipedia | Симметричное отношение] | ||
* [http://ru.wikipedia.org/wiki/%D0%9E%D1%82%D0%BD%D0%BE%D1%88%D0%B5%D0%BD%D0%B8%D0%B5_%D1%8D%D0%BA%D0%B2%D0%B8%D0%B2%D0%B0%D0%BB%D0%B5%D0%BD%D1%82%D0%BD%D0%BE%D1%81%D1%82%D0%B8 Wikipedia | Отношение эквивалентности] | * [http://ru.wikipedia.org/wiki/%D0%9E%D1%82%D0%BD%D0%BE%D1%88%D0%B5%D0%BD%D0%B8%D0%B5_%D1%8D%D0%BA%D0%B2%D0%B8%D0%B2%D0%B0%D0%BB%D0%B5%D0%BD%D1%82%D0%BD%D0%BE%D1%81%D1%82%D0%B8 Wikipedia | Отношение эквивалентности] | ||
* [http://ru.wikipedia.org/wiki/%D0%9E%D1%82%D0%BD%D0%BE%D1%88%D0%B5%D0%BD%D0%B8%D0%B5_%D1%82%D0%BE%D0%BB%D0%B5%D1%80%D0%B0%D0%BD%D1%82%D0%BD%D0%BE%D1%81%D1%82%D0%B8 Wikipedia | Отношение толерантности] | * [http://ru.wikipedia.org/wiki/%D0%9E%D1%82%D0%BD%D0%BE%D1%88%D0%B5%D0%BD%D0%B8%D0%B5_%D1%82%D0%BE%D0%BB%D0%B5%D1%80%D0%B0%D0%BD%D1%82%D0%BD%D0%BE%D1%81%D1%82%D0%B8 Wikipedia | Отношение толерантности] | ||
+ | |||
+ | * [http://en.wikipedia.org/wiki/Symmetric_relation Wikipedia | Symmetric relation] | ||
+ | |||
+ | [[Категория:Дискретная математика и алгоритмы]] | ||
+ | [[Категория: Отношения ]] |
Версия 00:47, 16 октября 2014
Бинарное отношение на множестве называется симметричным (англ. symmetric binary relation), если для каждой пары элементов множества выполнение отношения влечёт выполнение отношения .
Определение: |
Отношение | симметрично, если .
Отношение достижимости вершин неориентированного графа симметрично. Матрица симметричного отношения является симметричной относительно главной диагонали, т.е., формально, симметричной называют такую матрицу , что .
Примером антисимметричного отношения является отношение связи вершин направленного ациклического графа.
Любое отношение эквивалентности, по определению, является симметричным (а также рефлексивным и транзитивным). Также любое отношение толерантности является симметричным (а также рефлексивным, но при этом не транзитивным).
Не являются симметричными (за исключением случая тождественной ложности отношения) отношения порядка (как полного, так и частичного).
Примеры симметричных отношений
- Отношения эквивалентности:
- отношение равенства
- отношение сравнимости по модулю
- отношение равномощности множеств
- отношение параллельности прямых и плоскостей
- отношение подобия геометрических фигур
- Отношения толерантности:
- отношение "знакомства"
- отношение "наличие общего свойства"