Троичная логика — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Определение)
(Алгебраические свойства)
Строка 49: Строка 49:
 
Свойства констант:
 
Свойства констант:
  
<math>a \wedge + = a</math>
+
<math>a \wedge (+) = a</math>
  
<math>a \wedge - = -</math>
+
<math>a \wedge (-) = (-)</math>
  
<math>a \vee + = +</math>
+
<math>a \vee (+) = (+)</math>
  
<math>a \vee - = a</math>
+
<math>a \vee (-) = a</math>
  
<math>\overline{-} = +</math>
+
<math>\overline{(-)} = (+)</math>
  
<math>\overline{+} = -</math>
+
<math>\overline{(+)} = (-)</math>
  
 
Для конъюнкции и дизъюнкции в троичной логике сохраняются '''коммутативный''', '''ассоциативный''' и '''дистрибутивный законы''', '''закон идемпотентности'''.
 
Для конъюнкции и дизъюнкции в троичной логике сохраняются '''коммутативный''', '''ассоциативный''' и '''дистрибутивный законы''', '''закон идемпотентности'''.
Строка 71: Строка 71:
 
Буквальное определение '''циклического отрицания''' вытекает из следующих свойств:
 
Буквальное определение '''циклического отрицания''' вытекает из следующих свойств:
  
<math>- ' = 0</math>
+
<math>(-) ' = 0</math>
  
<math>0 ' = +</math>
+
<math>0 ' = (+)</math>
  
<math>+ ' = -</math>
+
<math>(+) ' = (-)</math>
  
 
Третье состояние ("0") при отрицании Лукашевича неизменно:
 
Третье состояние ("0") при отрицании Лукашевича неизменно:
Строка 87: Строка 87:
 
'''Закон несовместности состояний''' (аналог закона противоречия в двоичной логике):
 
'''Закон несовместности состояний''' (аналог закона противоречия в двоичной логике):
  
<math>Sa \wedge Sa'' = -</math>
+
<math>Sa \wedge Sa'' = (-)</math>
  
<math>Sa' \wedge Sa'' = -</math>
+
<math>Sa' \wedge Sa'' = (-)</math>
  
<math>Sa' \wedge Sa = -</math>
+
<math>Sa' \wedge Sa = (-)</math>
  
 
'''Закон исключённого четвёртого''' (вместо '''закона исключённого третьего'''), он же '''закон полноты состояний''':
 
'''Закон исключённого четвёртого''' (вместо '''закона исключённого третьего'''), он же '''закон полноты состояний''':
  
<math>Sa' \vee Sa \vee Sa'' = +</math>, или  
+
<math>Sa' \vee Sa \vee Sa'' = (+)</math>, или  
  
<math>S^-a \vee Sa \vee S^+a = +</math>
+
<math>S^-a \vee Sa \vee S^+a = (+)</math>
  
 
'''Трёхчленный закон Блейка-Порецкого''':
 
'''Трёхчленный закон Блейка-Порецкого''':
Строка 104: Строка 104:
  
 
<math>a \vee S^-a \wedge b \vee Sa \wedge b = a \vee b</math>
 
<math>a \vee S^-a \wedge b \vee Sa \wedge b = a \vee b</math>
 +
 +
'''Закон трёхчленного склеивания''':
 +
 +
<math> a \wedge Sb' \vee a \wedge Sb \vee a \wedge Sb'' = a</math>, или
 +
 +
<math>a \wedge S^-b \vee a \wedge Sb \vee a \wedge S^+b = a</math>
 +
 +
'''Закон обобщённого трёхчленного склеивания''':
 +
 +
<math>a \wedge Sd' \vee b \wedge Sd \vee c \wedge Sd'' \vee a \wedge b \wedge c = a \wedge Sd' \vee b \wedge Sd \vee c \wedge Sd''</math>, или
 +
 +
<math>a \wedge S^-d \vee b \wedge Sd \vee c \wedge S^+d \vee a \wedge b \wedge c = a \wedge S^-d \vee b \wedge Sd \vee c \wedge S^+d</math>
 +
 +
'''Антиизотропность отрицания Лукашевича''':
 +
 +
<math>a \leq b \Rightarrow \overline a \geq \overline b</math>

Версия 10:48, 20 ноября 2014

Определение:
Трёхзначная логика (или троичная логика) — исторически первая многозначная логика, разработанная Яном Лукасевичем в 1920 г. Является простейшим расширением двузначной логики.


В традиционной трёхзначной логике "лжи" и "истине" соответствуют знаки „[math]-[/math]“ и „[math]+[/math]“. Третьему (серединному) состоянию соответствует знак "[math]0[/math]".

Классическими примерами состояний такой логики являются знаки ">", "<" и "=", состояние постоянного тока (движется в одну сторону, движется в другую сторону, отсутствует) и др.

Одноместные операции

Очевидно, что в троичной логике всего существует [math]3^3=27[/math] одноместных операций.

[math]a[/math][math]-[/math][math]0[/math][math]+[/math]
[math]f_0[/math]---[math]-[/math]
[math]f_1[/math]--0[math]\searrow[/math]
[math]f_2[/math]--+[math]S^+[/math]
[math]f_3[/math]-0-
[math]f_4[/math]-00
[math]f_5[/math]-0+[math]a[/math]
[math]f_6[/math]-+-[math]S[/math]
[math]f_7[/math]-+0[math]NOT^-[/math]
[math]f_8[/math]-++
[math]f_9[/math]0--
[math]f_{10}[/math]0-0
[math]f_{11}[/math]0-+[math]NOT^+[/math]
[math]f_{12}[/math]00-
[math]f_{13}[/math]000[math]0[/math]
[math]f_{14}[/math]00+[math]a^+[/math]
[math]f_{15}[/math]0+-[math]INC[/math]
[math]f_{16}[/math]0+0[math]a^o[/math]
[math]f_{17}[/math]0++[math]\nearrow[/math]
[math]f_{18}[/math]+--[math]S^-[/math]
[math]f_{19}[/math]+-0[math]DEC[/math]
[math]f_{20}[/math]+-+
[math]f_{21}[/math]+0-[math]NOT[/math]
[math]f_{22}[/math]+00[math]a^-[/math]
[math]f_{23}[/math]+0+
[math]f_{24}[/math]++-
[math]f_{25}[/math]++0
[math]f_{26}[/math]+++[math]+[/math]

[math]NOT^-[/math],[math]NOT[/math] и [math]NOT^+[/math] — инверсии. [math]NOT^-[/math] и [math]NOT^+[/math] сохраняют состояние "-" и "+" соответственно.

[math]INC[/math] и [math]DEC[/math] — модификации, увеличение/уменьшение на единицу по модулю три. При переполнении трита счёт начинается заново ([math]INC + = -[/math]).

Алгебраические свойства

Свойства констант:

[math]a \wedge (+) = a[/math]

[math]a \wedge (-) = (-)[/math]

[math]a \vee (+) = (+)[/math]

[math]a \vee (-) = a[/math]

[math]\overline{(-)} = (+)[/math]

[math]\overline{(+)} = (-)[/math]

Для конъюнкции и дизъюнкции в троичной логике сохраняются коммутативный, ассоциативный и дистрибутивный законы, закон идемпотентности.

Также действует закон двойного отрицания (отрицания Лукашевича) и тройного (циклического) отрицания:

[math]\overline{\overline{a}}=a[/math]

[math]a'''=a[/math]

Буквальное определение циклического отрицания вытекает из следующих свойств:

[math](-) ' = 0[/math]

[math]0 ' = (+)[/math]

[math](+) ' = (-)[/math]

Третье состояние ("0") при отрицании Лукашевича неизменно:

[math]\overline{0} = 0[/math]

[math]\overline{(a \wedge 0)} = \overline{a} \vee 0[/math]

Для законов двоичной логики, не справедливых для троичной, существуют их троичные аналоги.

Закон несовместности состояний (аналог закона противоречия в двоичной логике):

[math]Sa \wedge Sa'' = (-)[/math]

[math]Sa' \wedge Sa'' = (-)[/math]

[math]Sa' \wedge Sa = (-)[/math]

Закон исключённого четвёртого (вместо закона исключённого третьего), он же закон полноты состояний:

[math]Sa' \vee Sa \vee Sa'' = (+)[/math], или

[math]S^-a \vee Sa \vee S^+a = (+)[/math]

Трёхчленный закон Блейка-Порецкого:

[math]a \vee Sa' \wedge b \vee Sa \wedge b = a \vee b[/math], или

[math]a \vee S^-a \wedge b \vee Sa \wedge b = a \vee b[/math]

Закон трёхчленного склеивания:

[math] a \wedge Sb' \vee a \wedge Sb \vee a \wedge Sb'' = a[/math], или

[math]a \wedge S^-b \vee a \wedge Sb \vee a \wedge S^+b = a[/math]

Закон обобщённого трёхчленного склеивания:

[math]a \wedge Sd' \vee b \wedge Sd \vee c \wedge Sd'' \vee a \wedge b \wedge c = a \wedge Sd' \vee b \wedge Sd \vee c \wedge Sd''[/math], или

[math]a \wedge S^-d \vee b \wedge Sd \vee c \wedge S^+d \vee a \wedge b \wedge c = a \wedge S^-d \vee b \wedge Sd \vee c \wedge S^+d[/math]

Антиизотропность отрицания Лукашевича:

[math]a \leq b \Rightarrow \overline a \geq \overline b[/math]