Хроматический многочлен — различия между версиями
AKhimulya (обсуждение | вклад) м |
AKhimulya (обсуждение | вклад) |
||
| Строка 46: | Строка 46: | ||
|proof= | |proof= | ||
Рассмотрим случай <tex>n = 3</tex>: <tex>P(C_3, x) = x(x - 1)(x - 2) = (x - 1)(x^2 - x) = (x - 1)^3 + (-1)^3(x - 1)</tex>, что удовлетворяет формулировке теоремы.<br> | Рассмотрим случай <tex>n = 3</tex>: <tex>P(C_3, x) = x(x - 1)(x - 2) = (x - 1)(x^2 - x) = (x - 1)^3 + (-1)^3(x - 1)</tex>, что удовлетворяет формулировке теоремы.<br> | ||
| − | Пусть <tex>P( | + | Пусть <tex>P(C_k, x) = (x - 1)^k + (-1)^k(x - 1)</tex>.<br> |
Рассмотрим случай <tex>n = k + 1</tex>. По теореме о [[#.D0.A0.D0.B5.D0.BA.D1.83.D1.80.D1.80.D0.B5.D0.BD.D1.82.D0.BD.D1.8B.D0.B5_.D1.84.D0.BE.D1.80.D0.BC.D1.83.D0.BB.D1.8B_.D0.B4.D0.BB.D1.8F_.D1.85.D1.80.D0.BE.D0.BC.D0.B0.D1.82.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.B8.D1.85_.D0.BC.D0.BD.D0.BE.D0.B3.D0.BE.D1.87.D0.BB.D0.B5.D0.BD.D0.BE.D0.B2|рекурентной формуле для хроматических многочленов]]: <tex>P(C_{k + 1}, x ) = P(C_{k + 1} \setminus e, x) - P(C_{k + 1} / e, x)</tex> (где <tex>e</tex> — любое ребро <tex>C_{k + 1}</tex>). | Рассмотрим случай <tex>n = k + 1</tex>. По теореме о [[#.D0.A0.D0.B5.D0.BA.D1.83.D1.80.D1.80.D0.B5.D0.BD.D1.82.D0.BD.D1.8B.D0.B5_.D1.84.D0.BE.D1.80.D0.BC.D1.83.D0.BB.D1.8B_.D0.B4.D0.BB.D1.8F_.D1.85.D1.80.D0.BE.D0.BC.D0.B0.D1.82.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.B8.D1.85_.D0.BC.D0.BD.D0.BE.D0.B3.D0.BE.D1.87.D0.BB.D0.B5.D0.BD.D0.BE.D0.B2|рекурентной формуле для хроматических многочленов]]: <tex>P(C_{k + 1}, x ) = P(C_{k + 1} \setminus e, x) - P(C_{k + 1} / e, x)</tex> (где <tex>e</tex> — любое ребро <tex>C_{k + 1}</tex>). | ||
Заметим, что граф <tex>C_{k + 1} / e</tex> изоморфен <tex>C_k</tex>. Заметим, что граф <tex>C_{k + 1} \setminus e</tex> является [[#.D0.A5.D1.80.D0.BE.D0.BC.D0.B0.D1.82.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.B8.D0.B9_.D0.BC.D0.BD.D0.BE.D0.B3.D0.BE.D1.87.D0.BB.D0.B5.D0.BD_.D0.BF.D1.80.D0.BE.D1.81.D1.82.D0.BE.D0.B9_.D1.86.D0.B5.D0.BF.D0.B8|простой цепью]]. | Заметим, что граф <tex>C_{k + 1} / e</tex> изоморфен <tex>C_k</tex>. Заметим, что граф <tex>C_{k + 1} \setminus e</tex> является [[#.D0.A5.D1.80.D0.BE.D0.BC.D0.B0.D1.82.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.B8.D0.B9_.D0.BC.D0.BD.D0.BE.D0.B3.D0.BE.D1.87.D0.BB.D0.B5.D0.BD_.D0.BF.D1.80.D0.BE.D1.81.D1.82.D0.BE.D0.B9_.D1.86.D0.B5.D0.BF.D0.B8|простой цепью]]. | ||
| − | Тогда <tex>P(C_{k + 1}, x)=P(T_{k + 1}, x)-P(C_k, x)=x(x-1)^k-(x-1)^k-(-1)^k(x-1)=</tex><tex>(x-1)^{k+1}+(-1)^{k+1}(x-1)</tex>. | + | Тогда <tex>P(C_{k + 1}, x)=P(T_{k + 1}, x)-P(C_k, x)=x(x-1)^k-(x-1)^k-(-1)^k(x-1)=</tex> <tex>(x-1)^{k+1}+(-1)^{k+1}(x-1)</tex>. |
}} | }} | ||
=== Хроматический многочлен колеса === | === Хроматический многочлен колеса === | ||
| − | Пусть <tex>W_n</tex> — [[Двойственный_граф_планарного_графа|колесо]] с <tex>n</tex> вершинами. Выбрав и зафиксировав один из <tex>x</tex> цветов на вершине, связнной со всеми остальными, имеем <tex> | + | Пусть <tex>W_n</tex> — [[Двойственный_граф_планарного_графа|колесо]] с <tex>n</tex> вершинами. Выбрав и зафиксировав один из <tex>x</tex> цветов на вершине, связнной со всеми остальными, имеем <tex> P(C_{n - 1}, x - 1) </tex> вариантов раскраски оставшегося графа. Тогда хроматичсекий многочлен колеса <tex>P_{W_n}(x) = x \cdot P_{C_{n - 1}}(x - 1) = x((x - 2)^{(n - 1)} - (-1)^n(x - 2))</tex>. |
=== Хроматический многочлен дерева === | === Хроматический многочлен дерева === | ||
{{Теорема | {{Теорема | ||
| Строка 130: | Строка 130: | ||
* Асанов М. О., Баранский В. А., Расин В. В. - Дискретная математика: Графы, матроиды, алгоритмы: Учебное пособие. 2-е изд., испр. и доп. - СПб.: Издательство "Лань", 2010. - 368 с.: ил. - (Учебники для вузов. Специальная литература). ISBN 978-5-8114-1068-2 | * Асанов М. О., Баранский В. А., Расин В. В. - Дискретная математика: Графы, матроиды, алгоритмы: Учебное пособие. 2-е изд., испр. и доп. - СПб.: Издательство "Лань", 2010. - 368 с.: ил. - (Учебники для вузов. Специальная литература). ISBN 978-5-8114-1068-2 | ||
* Харари Ф. — Теория графов: Изд. 4-е. - М.: Книжный дом "ЛИБРОКОМ", 2009. - 296 с. ISBN 978-5-397-00622-4 | * Харари Ф. — Теория графов: Изд. 4-е. - М.: Книжный дом "ЛИБРОКОМ", 2009. - 296 с. ISBN 978-5-397-00622-4 | ||
| − | * [[wikipedia:en:Chromatic_polynomial| Wikipedia {{---}} | + | * [[wikipedia:en:Chromatic_polynomial| Wikipedia {{---}} Chromatic polynomial]] |
* [[wikipedia:ru:Хроматическое_число#.D0.A5.D1.80.D0.BE.D0.BC.D0.B0.D1.82.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.B8.D0.B9_.D0.BC.D0.BD.D0.BE.D0.B3.D0.BE.D1.87.D0.BB.D0.B5.D0.BD| Wikipedia {{---}} Хроматический многочлен]] | * [[wikipedia:ru:Хроматическое_число#.D0.A5.D1.80.D0.BE.D0.BC.D0.B0.D1.82.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.B8.D0.B9_.D0.BC.D0.BD.D0.BE.D0.B3.D0.BE.D1.87.D0.BB.D0.B5.D0.BD| Wikipedia {{---}} Хроматический многочлен]] | ||
[[Категория: Алгоритмы и структуры данных]] | [[Категория: Алгоритмы и структуры данных]] | ||
[[Категория: Раскраски графов]] | [[Категория: Раскраски графов]] | ||
Версия 02:20, 25 ноября 2014
| Определение: |
| Пусть дан фиксированный граф и фиксированное число красок . Количество способов правильной — раскраски графа называется хроматическим многочленом (англ. chromatic polynomial). Обозначение: . |
Содержание
Рекуррентные формулы для хроматических многочленов
| Определение: |
| Стягивание ребра (англ. edge contraction) — замена концов ребра одной вершиной, соседями новой вершины становятся соседи этих концов. Будем обозначать за граф, полученный из графа стягиванием ребра . |
| Теорема: |
Пусть и - несмежные вершины графа . Если , а , то . |
| Доказательство: |
| Рассмотрим все произвольные раскраски графа . Рассмотрим те из них, при которых вершины и окрашены в разные цвета. Если добавить к графу ребро , то они не изменятся, то есть останутся правильными. Рассмотрим раскраски, при которых и одного цвета. Все эти раскраски останутся правильными и для графа, полученного из слиянием вершин и . |
Замечание: Если к некоторому произвольному графу добавлять ребра последовательно, не меняя его вершин, то на каком-то шаге мы получим полный граф. Аналогично мы получим полный граф, если в произвольном графе уменьшим число вершин, путем их отождествления, не меняя числа ребер.
Следствие: Хроматический многочлен любого графа равен сумме хроматических многочленов некоторого числа полных графов, число вершин в которых не больше, чем в графе .
| Теорема: |
Пусть и — смежные вершины графа . Если и , то . |
| Доказательство: |
| Следует из предыдущей теоремы. |
Примеры хроматических многочленов
Хроматический многочлен полного графа
, так как первую вершину полного графа можно окрасить в любой из цветов, вторую — в любой из оставшихся цветов и т. д. Очевидно, что если меньше , то и многочлен равен , так как один из его множителей .
Хроматический многочлен нуль-графа
| Определение: |
| Нуль-граф (пустой граф, вполне несвязный граф; англ. null graph, empty graph, edgeless graph) — регулярный граф степени , т.е. граф без рёбер. |
, так как каждую из вершин нулевого графа можно независимо окрасить в любой из цветов.
Примечание: Нулевой граф также можно обозначать (дополнительный граф для полного графа ).
Хроматический многочлен простой цепи
Пусть — простая цепь, состоящая из вершин. Рассмотрим процесс раскраски простой цепи: первую вершину можно покрасить в один из цветов, вторую и последующие в один из цветов (т.е. так, чтобы цвет не совпадал с предыдущей вершиной). Тогда .
Хроматический многочлен цикла
| Теорема (хроматический многочлен цикла): |
Пусть — цикл длины . Тогда хроматичсекий многочлен цикла . |
| Доказательство: |
|
Рассмотрим случай : , что удовлетворяет формулировке теоремы. |
Хроматический многочлен колеса
Пусть — колесо с вершинами. Выбрав и зафиксировав один из цветов на вершине, связнной со всеми остальными, имеем вариантов раскраски оставшегося графа. Тогда хроматичсекий многочлен колеса .
Хроматический многочлен дерева
| Теорема (хроматический многочлен дерева): |
Граф с вершинами является деревом тогда и только тогда, когда . |
| Доказательство: |
|
|
Коэффициенты хроматического многочлена
| Теорема (1): |
Свободный член хроматического многочлена равен . |
| Доказательство: |
| По определению хроматического многочлена графа , его значение в точке равно количеству способов раскрасить вершины правильным образом в цветов. Количество способов раскрасить граф в цветов равно . То есть . Из этого следует, что кратен , следовательно его свободный член равен . |
| Теорема (2): |
Старший коэффициент хроматического многочлена равен . |
| Доказательство: |
|
Воспользуемся рекуррентной формулой: |
| Теорема (3): |
Коэффициенты хроматического многочлена составляют знакопеременную последовательность. |
| Доказательство: |
|
Индукция по количеству вершин. |
| Теорема (4): |
Второй коэффициент хроматического многочлена равен по модулю количеству ребер графа. |
| Доказательство: |
| Из доказательства Теоремы (3) видно, что при увеличении количества ребер графа на , второй коэффициент также увеличивается на . Так как для пустого графа второй коэффициент равен , то утверждение верно для любого графа. |
Источники информации
- Асанов М. О., Баранский В. А., Расин В. В. - Дискретная математика: Графы, матроиды, алгоритмы: Учебное пособие. 2-е изд., испр. и доп. - СПб.: Издательство "Лань", 2010. - 368 с.: ил. - (Учебники для вузов. Специальная литература). ISBN 978-5-8114-1068-2
- Харари Ф. — Теория графов: Изд. 4-е. - М.: Книжный дом "ЛИБРОКОМ", 2009. - 296 с. ISBN 978-5-397-00622-4
- Wikipedia — Chromatic polynomial
- Wikipedia — Хроматический многочлен