Двойственный граф планарного графа — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Переделал с помощью исправленного шаблона определения)
Строка 2: Строка 2:
  
  
<div style="background-color: #fcfcfc; float:left;">
+
{{Определение
<div style="background-color: #ddd;">'''Определение'''</div>
+
|neat=neat
<div style="border:1px dashed #2f6fab; padding: 8px; font-style: italic;">Граф<ref>На самом деле, ''двойственный граф'' — '''псевдограф''', поскольку в нём могут быть петли и кратные рёбра.</ref> ''G&prime;'' называется '''двойственным''' к планарному графу ''G'', если:
+
|definition=Граф<ref>На самом деле, ''двойственный граф'' — '''псевдограф''', поскольку в нём могут быть петли и кратные рёбра.</ref> ''G&prime;'' называется '''двойственным''' к планарному графу ''G'', если:
 
# Вершины ''G&prime;'' соответствуют граням ''G''
 
# Вершины ''G&prime;'' соответствуют граням ''G''
# Между двумя вершинами в ''G&prime;'' есть ребро тогда и только тогда, когда соответствующие грани в ''G'' имеют общее ребро</div>
+
# Между двумя вершинами в ''G&prime;'' есть ребро тогда и только тогда, когда соответствующие грани в ''G'' имеют общее ребро
</div>
+
}}
 
[[Файл:Dual_graph.png|thumb|right|Граф (белые вершины) и двойственный ему (полосатые вершины).]]
 
[[Файл:Dual_graph.png|thumb|right|Граф (белые вершины) и двойственный ему (полосатые вершины).]]
<div style="clear:left;"></div>
+
<div style='clear:left;'></div>
  
  

Версия 09:23, 17 октября 2010

Эта статья находится в разработке!


Определение:
Граф[1] G′ называется двойственным к планарному графу G, если:
  1. Вершины G′ соответствуют граням G
  2. Между двумя вершинами в G′ есть ребро тогда и только тогда, когда соответствующие грани в G имеют общее ребро
Граф (белые вершины) и двойственный ему (полосатые вершины).


«…Для данного плоского графа G его двойственный граф G′ строится следующим образом: поместим в каждую область G (включая внешнюю) по одной вершине графа G′ и, если две области имеют общее ребро x, соединим помещенные в них вершины ребром x′, пересекающим только x. В результате всегда получится плоский псевдограф. Ясно, что G′ имеет петлю тогда и только тогда, когда в G есть концевая вершина; G′ имеет кратные рёбра тогда и только тогда, когда две области графа G содержат по крайней мере два общих ребра. Таким образом, двусвязный плоский граф имеет всегда в качестве двойственного или граф или мультиграф, в то время как двойственный граф трёхсвязного плоского графа всегда представляет собой граф. Другими примерами двойственных графов являются платоновы графы: тетраэдр — самодвойственный граф, куб и октаэдр — двойственные, так же как додекаэдр и икосаэдр…»[2].

В верхнем двойственном графе есть вершина степени 6, а в нижнем — нет. Следовательно, они не изоморфны.

Свойства

Дерево и двойственный к нему «цветок».‎
  • Если G′двойственный к двусвязному графу G, то Gдвойственный к G′
  • У одного и того же графа может быть несколько двойственных, в зависимости от конкретной укладки (см. картинку)
  • Поскольку любой трёхсвязный планарный граф допускает только одну укладку на сфере[3], у него должен быть единственный двойственный граф
  • Мост переходит в петлю, а петля — в мост
  • Мультиграф, двойственный к дереву, — цветок

Примечания

  1. На самом деле, двойственный графпсевдограф, поскольку в нём могут быть петли и кратные рёбра.
  2. Харари, Ф. Теория графов. — М.: Книжный дом «ЛИБРОКОМ», 2009. — С. 138. — ISBN 978­-5­-397­-00622­-4.
  3. Харари, Ф. Теория графов. — М.: Книжный дом «ЛИБРОКОМ», 2009. — Теорема 11.5 — С. 130. — ISBN 978­-5­-397­-00622­-4.