Троичная логика — различия между версиями
Romanosov (обсуждение | вклад) |
Romanosov (обсуждение | вклад) (→Преимущества перед двоичной логикой) |
||
Строка 14: | Строка 14: | ||
'''Троичная система счисления''' — позиционная система счисления с целочисленным основанием, равным 3. Существует в двух вариантах: '''несимметричная''' ({0,1,2}, {0,1/2,1} и др.) и '''симметричная''' (обычно {−,0,+} или {−1,0,1}). | '''Троичная система счисления''' — позиционная система счисления с целочисленным основанием, равным 3. Существует в двух вариантах: '''несимметричная''' ({0,1,2}, {0,1/2,1} и др.) и '''симметричная''' (обычно {−,0,+} или {−1,0,1}). | ||
}} | }} | ||
+ | Троичная логика обладает рядом преимуществ перед двоичной. Ниже перечислены основные из них: | ||
+ | |||
+ | * Троичная СС позволяет вмещать больший диапазон чисел в памяти троичного компьютера, поскольку <tex>3^n>2^n</tex>. | ||
− | * | + | * <p>Очевидно, что троичная СС использует меньше разрядов для записи чисел, по-сравнению с двоичной СС. Например: |
− | + | <tex>1110101_2=11100_3</tex> | |
− | <tex> | ||
− | <tex> | + | <tex>1000_2=22_3</tex> |
(для троичной СС используется несимметричный набор {0,1,2}. | (для троичной СС используется несимметричный набор {0,1,2}. | ||
+ | Эти два важных преимущества перед двоичной системой счисления говорят о большей '''экономичности''' троичной системы счисления. | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
'''Экономичность системы счисления''' — возможность представления как можно большего количества чисел с использованием как можно меньшего общего количества знаков. | '''Экономичность системы счисления''' — возможность представления как можно большего количества чисел с использованием как можно меньшего общего количества знаков. | ||
}} | }} | ||
+ | </p> | ||
+ | |||
+ | * Троичная логика включает в себя почти все возможности двоичной логики. | ||
+ | |||
+ | * Компьютер, основанный на троичной логике, обладает большим быстродействием. Например, [[троичный сумматор]] и полусумматор в троичном компьютере при сложении тритов выполняет примерно в 1,5 раза меньше операций сложения, по-сравнению с двоичным компьютером. | ||
==Перспективы развития== | ==Перспективы развития== |
Версия 09:16, 4 декабря 2014
Определение: |
Троичная или трёхзначная логика (англ. ternary logic) — исторически первая многозначная логика, разработанная Яном Лукасевичем в 1920 г. Является простейшим расширением двузначной логики. |
В традиционной трёхзначной логике "лжи" и "истине" соответствуют знаки и . Третьему (серединному) состоянию соответствует знак . Допустимо использование таких наборов знаков, как {0,1,2}, {-1,0,1}, {0,1/2,1} {N,Z,P}, {Л,Н,И} и др.
Классическими примерами состояний такой логики являются знаки
, и , состояние постоянного тока (движется в одну сторону, движется в другую сторону, отсутствует) и др.Содержание
Преимущества перед двоичной логикой
Определение: |
Троичная система счисления — позиционная система счисления с целочисленным основанием, равным 3. Существует в двух вариантах: несимметричная ({0,1,2}, {0,1/2,1} и др.) и симметричная (обычно {−,0,+} или {−1,0,1}). |
Троичная логика обладает рядом преимуществ перед двоичной. Ниже перечислены основные из них:
- Троичная СС позволяет вмещать больший диапазон чисел в памяти троичного компьютера, поскольку .
-
Очевидно, что троичная СС использует меньше разрядов для записи чисел, по-сравнению с двоичной СС. Например:
(для троичной СС используется несимметричный набор {0,1,2}.
Эти два важных преимущества перед двоичной системой счисления говорят о большей экономичности троичной системы счисления.
Определение: |
Экономичность системы счисления — возможность представления как можно большего количества чисел с использованием как можно меньшего общего количества знаков. |
- Троичная логика включает в себя почти все возможности двоичной логики.
- Компьютер, основанный на троичной логике, обладает большим быстродействием. Например, троичный сумматор и полусумматор в троичном компьютере при сложении тритов выполняет примерно в 1,5 раза меньше операций сложения, по-сравнению с двоичным компьютером.
Перспективы развития
Одноместные операции
Очевидно, что в троичной логике всего существует
одноместных операций., и — операторы инверсии. и сохраняют состояние и соответственно.
, — операторы выбора. Превращают одно из трёх состояний в , а остальные две приобретают значение .
и — операторы модификации, соответственно увеличение и уменьшение трита на единицу по модулю три. При переполнении трита счёт начинается заново ( ).
"
", " " и " " — фунцкии, не зависящие от аргумента .- | - | - | ||
- | - | 0 | ||
- | - | + | ||
- | 0 | - | ||
- | 0 | 0 | ||
- | 0 | + | ||
- | + | - | ||
- | + | 0 | ||
- | + | + | ||
0 | - | - | ||
0 | - | 0 | ||
0 | - | + | ||
0 | 0 | - | ||
0 | 0 | 0 | ||
0 | 0 | + | ||
0 | + | - | ||
0 | + | 0 | ||
0 | + | + | ||
+ | - | - | ||
+ | - | 0 | ||
+ | - | + | ||
+ | 0 | - | ||
+ | 0 | 0 | ||
+ | 0 | + | ||
+ | + | - | ||
+ | + | 0 | ||
+ | + | + |
Остальные функции образуются путём сочетания операторов выбора с операторами инверсии и модификации.
Дизъюнкция и конъюнкция
Всего в троичной логике существует
двухместные операции. Для реализации любой из них при использовании сколь угодного числа переменных достаточно использовать операции выбора и наиболее простые двухместные операции: дизъюнкция и конъюнкция.В троичной логике более наглядно использование префиксной нотации для этих операций.
Таблица результатов дизъюнкции двух переменных.
- | 0 | + | |
0 | 0 | + | |
+ | + | + |
Таблица результатов конъюнкции двух переменных.
- | - | - | |
- | 0 | 0 | |
- | 0 | + |
Алгебраические свойства
- Свойства констант:
- Для конъюнкции и дизъюнкции в троичной логике сохраняются коммутативный, ассоциативный и дистрибутивный законы, закон идемпотентности.
- Закон двойного отрицания (отрицания Лукашевича) и тройного (циклического) отрицания:
- Буквальное определение циклического отрицания вытекает из следующих свойств:
- Имеет место быть неизменность третьего состояния ("0") при отрицании Лукашевича:
Для законов двоичной логики, не справедливых для троичной, существуют их троичные аналоги.
- Закон несовместности состояний (аналог закона противоречия в двоичной логике):
- Закон исключённого четвёртого (вместо закона исключённого третьего), он же закон полноты состояний:
- Трёхчленный закон Блейка-Порецкого:
- Закон трёхчленного склеивания:
- Закон обобщённого трёхчленного склеивания:
- Антиизотропность отрицания Лукашевича:
, или
, или
, или
, или