Формула Эйлера — различия между версиями
м (Добавлены категории) |
|||
| Строка 18: | Строка 18: | ||
==Литература== | ==Литература== | ||
* Асанов М,, Баранский В., Расин В. - Дискретная математика - Графы, матроиды, алгоритмы | * Асанов М,, Баранский В., Расин В. - Дискретная математика - Графы, матроиды, алгоритмы | ||
| + | |||
| + | [[Категория: Алгоритмы и структуры данных]] | ||
| + | [[Категория: Укладки графов ]] | ||
Версия 15:18, 19 октября 2010
| Теорема (Формула Эйлера): |
Для произвольного плоского связного графа с вершинами, ребрами и гранями справедливо следующее соотношение:
|
| Теорема (Следствие из формулы Эйлера): |
Пусть произвольный граф с вершинами (), ребрами и гранями. Тогда |
| Доказательство: |
| Поскольку не содержит петель и кратных ребер, то каждая грань граничит хотя бы с тремя ребрами. Пусть, двигаясь вдоль -й грани мы пройдем ребер. Очевидно, что . Поскольку , получаем . Из формулы Эйлера , то есть . |
Литература
- Асанов М,, Баранский В., Расин В. - Дискретная математика - Графы, матроиды, алгоритмы