Троичная логика — различия между версиями
Romanosov (обсуждение | вклад)  (→Преимущества перед двоичной логикой)  | 
				Romanosov (обсуждение | вклад)   | 
				||
| Строка 36: | Строка 36: | ||
* Компьютер, основанный на троичной логике, обладает большим быстродействием. Например, [[троичный сумматор]] и полусумматор в троичном компьютере при сложении тритов выполняет примерно в 1,5 раза меньше операций сложения по-сравнению с двоичным компьютером.  | * Компьютер, основанный на троичной логике, обладает большим быстродействием. Например, [[троичный сумматор]] и полусумматор в троичном компьютере при сложении тритов выполняет примерно в 1,5 раза меньше операций сложения по-сравнению с двоичным компьютером.  | ||
| + | |||
| + | ==Проблемы реализации==  | ||
| + | |||
| + | Электронные компоненты для построения логики, использующие более двух состояний, требуют больше материальных затрат на их производство, достаточно сложны в реализации, и потребляют больше электроэнергии, поэтому троичные компьютеры занимают очень малое место в истории.   | ||
| + | Использование двоичных компьютеров — более простых и дешёвых в реализации — практически полностью затмило применение троичных компьютеров, в том числе и по сей день.  | ||
==Перспективы развития==  | ==Перспективы развития==  | ||
Версия 20:30, 9 декабря 2014
| Определение: | 
| Троичная или трёхзначная логика (англ. ternary logic) — исторически первая многозначная логика, разработанная Яном Лукасевичем в 1920 г. Является простейшим расширением двузначной логики. | 
В традиционной трёхзначной логике "лжи" и "истине" соответствуют знаки  и . Третьему (серединному) состоянию соответствует знак . Допустимо использование таких наборов знаков, как {0,1,2}, {-1,0,1}, {0,1/2,1} {N,Z,P}, {Л,Н,И} и др.
Классическими примерами состояний такой логики являются знаки , и , состояние постоянного тока (движется в одну сторону, движется в другую сторону, отсутствует) и др.
Содержание
Преимущества перед двоичной логикой
| Определение: | 
| Троичная система счисления — позиционная система счисления с целочисленным основанием, равным 3. Существует в двух вариантах: несимметричная ({0,1,2}, {0,1/2,1} и др.) и симметричная (обычно {−,0,+} или {−1,0,1}). | 
Троичная логика обладает рядом преимуществ перед двоичной. Ниже перечислены основные:
- Троичная СС позволяет вмещать больший диапазон чисел в памяти троичного компьютера, поскольку .
 
-  
Очевидно, что троичная СС использует меньше разрядов для записи чисел, по-сравнению с двоичной СС. Например:
 
(для троичной СС используется несимметричный набор {0,1,2}.
Эти два важных преимущества перед двоичной системой счисления говорят о большей экономичности троичной системы счисления.
| Определение: | 
| Экономичность системы счисления — возможность представления как можно большего количества чисел с использованием как можно меньшего общего количества знаков. | 
- Троичная логика включает в себя почти все возможности двоичной логики.
 
- Компьютер, основанный на троичной логике, обладает большим быстродействием. Например, троичный сумматор и полусумматор в троичном компьютере при сложении тритов выполняет примерно в 1,5 раза меньше операций сложения по-сравнению с двоичным компьютером.
 
Проблемы реализации
Электронные компоненты для построения логики, использующие более двух состояний, требуют больше материальных затрат на их производство, достаточно сложны в реализации, и потребляют больше электроэнергии, поэтому троичные компьютеры занимают очень малое место в истории. Использование двоичных компьютеров — более простых и дешёвых в реализации — практически полностью затмило применение троичных компьютеров, в том числе и по сей день.
Перспективы развития
Одноместные операции
Очевидно, что в троичной логике всего существует одноместных операций.
, и — операторы инверсии. и сохраняют состояние и соответственно.
, — операторы выбора. Превращают одно из трёх состояний в , а остальные две приобретают значение .
и — операторы модификации, соответственно увеличение и уменьшение трита на единицу по модулю три. При переполнении трита счёт начинается заново ().
"", " " и "" — фунцкии, не зависящие от аргумента .
| - | - | - | ||
| - | - | 0 | ||
| - | - | + | ||
| - | 0 | - | ||
| - | 0 | 0 | ||
| - | 0 | + | ||
| - | + | - | ||
| - | + | 0 | ||
| - | + | + | ||
| 0 | - | - | ||
| 0 | - | 0 | ||
| 0 | - | + | ||
| 0 | 0 | - | ||
| 0 | 0 | 0 | ||
| 0 | 0 | + | ||
| 0 | + | - | ||
| 0 | + | 0 | ||
| 0 | + | + | ||
| + | - | - | ||
| + | - | 0 | ||
| + | - | + | ||
| + | 0 | - | ||
| + | 0 | 0 | ||
| + | 0 | + | ||
| + | + | - | ||
| + | + | 0 | ||
| + | + | + | 
Остальные функции образуются путём сочетания операторов выбора с операторами инверсии и модификации.
Дизъюнкция и конъюнкция
Всего в троичной логике существует двухместные операции. Для реализации любой из них при использовании сколь угодного числа переменных достаточно использовать операции выбора и наиболее простые двухместные операции: дизъюнкция и конъюнкция.
В троичной логике более наглядно использование префиксной нотации для этих операций.
Таблица результатов дизъюнкции двух переменных.
| - | 0 | + | |
| 0 | 0 | + | |
| + | + | + | 
Таблица результатов конъюнкции двух переменных.
| - | - | - | |
| - | 0 | 0 | |
| - | 0 | + | 
Алгебраические свойства
- Свойства констант:
 - Для конъюнкции и дизъюнкции в троичной логике сохраняются коммутативный, ассоциативный и дистрибутивный законы, закон идемпотентности.
 - Закон двойного отрицания (отрицания Лукашевича) и тройного (циклического) отрицания:
 - Буквальное определение циклического отрицания вытекает из следующих свойств:
 - Имеет место быть неизменность третьего состояния ("0") при отрицании Лукашевича:
 
Для законов двоичной логики, не справедливых для троичной, существуют их троичные аналоги.
- Закон несовместности состояний (аналог закона противоречия в двоичной логике):
 - Закон исключённого четвёртого (вместо закона исключённого третьего), он же закон полноты состояний:
 - Трёхчленный закон Блейка-Порецкого:
 - Закон трёхчленного склеивания:
 - Закон обобщённого трёхчленного склеивания:
 - Антиизотропность отрицания Лукашевича:
 
, или
, или
, или
, или