Троичный сумматор — различия между версиями
(Отмена правки 42936 участника 217.66.159.48 (обсуждение)) |
|||
Строка 95: | Строка 95: | ||
==Источники информации== | ==Источники информации== | ||
− | * [https://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%BE%D0%B8%D1%87%D0%BD%D1%8B%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8 Некоторые троичные схемы] | + | * [https://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%BE%D0%B8%D1%87%D0%BD%D1%8B%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8 Википедия — Некоторые троичные схемы] |
− | * [https://ru.wikipedia.org/wiki/%D0%A1%D1%83%D0%BC%D0%BC%D0%B0%D1%82%D0%BE%D1%80#cite_note-9 Различные сумматоры] | + | * [https://ru.wikipedia.org/wiki/%D0%A1%D1%83%D0%BC%D0%BC%D0%B0%D1%82%D0%BE%D1%80#cite_note-9 Википедия — Различные сумматоры] |
Версия 08:46, 27 декабря 2014
Определение: |
Функциональная схема (англ. Functional Flow Block Diagram) — документ, разъясняющий процессы, протекающие в отдельных функциональных цепях изделия (установки) или изделия (установки) в целом. Функциональная схема является экспликацией (поясняющим материалом) отдельных видов процессов, протекающих в целостных функциональных блоках и цепях устройства. |
Содержание
Принципы построения функциональной схемы
Функциональная схема — вид графической модели изделия. Их использование и построение позволяет наглядно отразить устройство функциональных (рабочих) изменений, описание которых оперирует любыми (в том числе и несущественными) микросхемами, БИС и СБИС. Поскольку функциональные схемы не имеют собственной системы условных обозначений, их построение допускает сочетание кинематических, электрических и алгоритмических обозначений (для таких схем более подходящим термином оказывается комбинированные схемы).
Троичный полусумматор с одним неполным слагаемым
Первая ступень полного троичного сумматора.
Для сложения одного троичного разряда с разрядом переноса.
Результат не изменяется при перемене мест операндов.
transfer содержит разряд переноса, sum содержит сумму по модулю 3.
Результат операции занимает 1 и 2/3 троичных разряда.
Троичный полусумматор в несимметричной троичной системе счисления
Троичное логическое сложение двух троичных разрядов с разрядом переноса в несимметричной троичной системе счисления.
Результат не изменяется при перемене мест операндов.
Троичный полусумматор можно рассматривать, как объединение двух бинарных троичных функций: «логического сложения по модулю 3 в троичной несимметричной системе счисления» и «разряд переноса при сложении двух полных троичных разрядов в троичной несимметричной системе счисления».
В отличие от предыдущих бинарных троичных функций с одноразрядным результатом, результат функции занимает 1 и 2/3 троичных разрядов, так как при сложении в троичной несимметричной системе в разряде переноса не бывает значения больше единицы.
transfer — перенос в n + 1, несимметричный.
sum — сумма по модулю 3, несимметричная.
Троичный вычитатель
Полный троичный одноразрядный вычитатель является неполной тринарной троичной логической функцией, так как в разряде займа только два значения 0 и 1. Результат имеет длину 1 и 2/3 троичных разряда. Результат изменяется при перемене мест операндов.
В разряде займа не бывает третьего значения троичного разряда (2), так как в «худшем» случае
, то есть в старшем разряде «1». Единица займа возникает в 9-ти случаях из 18.