Укладка графа с планарными компонентами рёберной двусвязности — различия между версиями
м |
|||
Строка 47: | Строка 47: | ||
Из определения ребер дерева к.р.д. получаем, что графы <tex>G_1</tex> и <tex>G_2</tex> соединены в графе <tex>G'</tex> единственным мостом <tex>e \in G'</tex> инцидентным блоку <tex>G_1</tex> в дереве <tex>T</tex>. Поскольку <tex>T = \{G_1\}\cup e\cup \{G_2\}</tex>, то и <tex>G' = \{G_1\}\cup e\cup \{G_2\}</tex>. Покажем как из укладок <tex>G_1</tex> и <tex>G_2</tex> получить укладку <tex>G'</tex>. | Из определения ребер дерева к.р.д. получаем, что графы <tex>G_1</tex> и <tex>G_2</tex> соединены в графе <tex>G'</tex> единственным мостом <tex>e \in G'</tex> инцидентным блоку <tex>G_1</tex> в дереве <tex>T</tex>. Поскольку <tex>T = \{G_1\}\cup e\cup \{G_2\}</tex>, то и <tex>G' = \{G_1\}\cup e\cup \{G_2\}</tex>. Покажем как из укладок <tex>G_1</tex> и <tex>G_2</tex> получить укладку <tex>G'</tex>. | ||
− | Уложим <tex>G_2</tex> на сфере и уложим <tex>G_1</tex> на плоскости так, чтобы ребро <tex>e_1 \in G_1</tex> смежное с <tex>e</tex> в G' (если таковое имеется) оказалось на границе внешней грани (по [[#l2|лемме II]] это возможно). Если такого ребра <tex>e_1</tex> не существует, значит <tex>G_1</tex> тривиальный. В таком случае возьмем любую | + | Уложим <tex>G_2</tex> на сфере и уложим <tex>G_1</tex> на плоскости так, чтобы ребро <tex>e_1 \in G_1</tex> смежное с <tex>e</tex> в G' (если таковое имеется) оказалось на границе внешней грани (по [[#l2|лемме II]] это возможно). Если такого ребра <tex>e_1</tex> не существует, значит к.р.д. <tex>G_1</tex> — тривиальный граф. В таком случае возьмем любую укладку <tex>G_1</tex> на плоскости. Обозначим за <tex>u</tex> вершину из <tex>G_2</tex> инцедентную <tex>e</tex>. Сожмем часть плоскости, содержащую укладку <tex>G_1</tex>, так, чтобы она вмещалась в одну из граней укладки <tex>G_2</tex> смежную с <tex>u</tex>. Проведем жорднанову кривую, соответствующую ребру <tex>e</tex>, от вершины <tex>u</tex> к инцидентоной <tex>e</tex> вершине графа <tex>G_1</tex> так, чтобы она не пересекалась с укладками <tex>G_1</tex> и <tex>G_2</tex>. Мы получили укладку графа <tex>G'</tex> на сфере, а значит (по [[#l1|лемме I]]) <tex>G'</tex> планарен, следовательно предположение индукции верно. |
</div> | </div> | ||
Версия 20:37, 21 октября 2010
Теорема (об укладке графа с планарными компонентами реберной двусвязности): | ||||||||||||
Если компоненты реберной двусвязности (к.р.д.) графа планарны, то и сам граф планарен. | ||||||||||||
Доказательство: | ||||||||||||
Докажем для начала ряд вспомогательных лемм.
Докажем утверждение теоремы для одной из компонент связности графа леммы и из связности получаем, что — дерево. . Ясно, что имея укладки на плоскости каждой из компонент связности графа , мы можем получить укладку на плоскости и всего графа. Итак пусть граф связен. Рассмотрим связный подграф графа к.р.д. графа . ИзДокажем индукцией по числу вершин в графе , что подграф графа состоящий из к.р.д. и мостов графа принадлежащих графу планарен (далее будем говрить, что соответствует ).База индукции. Если , то граф - тривиальный. Его единственная вершина - это к.р.д. графа , которая по утверждению теоремы - планарна.Индукционный переход. Пусть утверждение верно для . Рассмотрим , для которого , и соответствующий подграф графа . Докажем, что планарен.Положим — к.р.д. графа являющийся висячей вершиной дерева , a — мост в инцидентный в . планарен по утверждению теоремы, т.к. к.р.д. графа совпадают с к.р.д. графа . Далее рассмотрим подграф графа , соответствующий дереву . Поскольку — висячая вершина , то связен, и, очевидно, также как и является подграфом графа к.р.д. . Итак планарен по предположению индукции, т.к. .Из определения ребер дерева к.р.д. получаем, что графы и соединены в графе единственным мостом инцидентным блоку в дереве . Поскольку , то и . Покажем как из укладок и получить укладку .Уложим лемме II это возможно). Если такого ребра не существует, значит к.р.д. — тривиальный граф. В таком случае возьмем любую укладку на плоскости. Обозначим за вершину из инцедентную . Сожмем часть плоскости, содержащую укладку , так, чтобы она вмещалась в одну из граней укладки смежную с . Проведем жорднанову кривую, соответствующую ребру , от вершины к инцидентоной вершине графа так, чтобы она не пересекалась с укладками и . Мы получили укладку графа на сфере, а значит (по лемме I) планарен, следовательно предположение индукции верно. на сфере и уложим на плоскости так, чтобы ребро смежное с в G' (если таковое имеется) оказалось на границе внешней грани (по | ||||||||||||
Замечание. Доказательство теоремы непосредственно задает способ укладки графа
.Источники
Асанов М., Баранский В., Расин В. - Дискретная математика: Графы, матроиды, алгоритмы — Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001.
H. Whitney - Non-separable and planar graphs - Trans. Amer. Math. Soc., 1932.