Хроматический многочлен — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «{{Определение |definition= }} == Хроматический многочлен полного графа == == Хроматический многочл…»)
 
(Хроматический многочлен полного графа)
Строка 4: Строка 4:
  
 
== Хроматический многочлен полного графа ==
 
== Хроматический многочлен полного графа ==
 +
<tex>P(K_{n},x)=x(x-1)...(x-n+1)=x^{\underline{n}}</tex>, так как первую вершину полного графа <tex>K_{n}</tex> можно окрасить в любой из <tex>x</tex> цветов, вторую - в любой из оставшихся <tex>x-1</tex> цветов и т. д. Очевидно, что если <tex>x</tex> меньше <tex>n</tex>, то и многочлен равен <tex>0</tex>, потому что один из его множителей <tex>0</tex>.<br />
 +
Примечание. В некоторых источниках <tex>x^{\underline{n}}</tex> (<tex>x</tex> в <tex>n</tex>-убывающей) обозначают <tex>x^{(n)}</tex>. Это не очень удобно, так как легко спутать с <tex>n</tex>-ой производной.
 +
 
== Хроматический многочлен пустого графа ==
 
== Хроматический многочлен пустого графа ==
 
== Хроматический многочлен дерева ==
 
== Хроматический многочлен дерева ==

Версия 02:49, 23 октября 2010

Определение:


Хроматический многочлен полного графа

[math]P(K_{n},x)=x(x-1)...(x-n+1)=x^{\underline{n}}[/math], так как первую вершину полного графа [math]K_{n}[/math] можно окрасить в любой из [math]x[/math] цветов, вторую - в любой из оставшихся [math]x-1[/math] цветов и т. д. Очевидно, что если [math]x[/math] меньше [math]n[/math], то и многочлен равен [math]0[/math], потому что один из его множителей [math]0[/math].
Примечание. В некоторых источниках [math]x^{\underline{n}}[/math] ([math]x[/math] в [math]n[/math]-убывающей) обозначают [math]x^{(n)}[/math]. Это не очень удобно, так как легко спутать с [math]n[/math]-ой производной.

Хроматический многочлен пустого графа

Хроматический многочлен дерева

Коэффициенты хроматического многочлена

Рекуррентные формулы для хроматических многочленов

См. также

Литература