Колмогоровская сложность — различия между версиями
| Строка 29: | Строка 29: | ||
|definition= | |definition= | ||
Будем говорить, что декомпрессор <tex>D_1</tex> '''лучше''', чем декомпрессор <tex>D_2</tex>, если <tex>\exists c:\forall x \in \{0, 1\}^*\ K_{D_1}(x) \leqslant K_{D_2}(x) + c</tex>. | Будем говорить, что декомпрессор <tex>D_1</tex> '''лучше''', чем декомпрессор <tex>D_2</tex>, если <tex>\exists c:\forall x \in \{0, 1\}^*\ K_{D_1}(x) \leqslant K_{D_2}(x) + c</tex>. | ||
| + | }} | ||
| + | |||
| + | {{Теорема | ||
| + | |statement = Существует оптимальный декомпрессор <tex>U</tex>, который лучше всех остальных. | ||
| + | |proof = Пусть <tex>p</tex> {{---}} некоторая строка, <tex>|p| = n</tex>. Обозначим за <tex>\hat{p}</tex> строку <tex>p_1 p_1 p_2 p_2 ... p_n p_n 0 1</tex> (мы удвоили каждый бит строки <tex>p</tex> и добавили в конце <tex>01</tex>).<br> | ||
| + | Оптимальный декомпрессор будет работать следующим образом: <tex>U(\hat{p}x) = \langle p \rangle(x)</tex>, т.е. он интерпретирует <tex>p</tex> как программу, а <tex>x</tex> как входные данные и запускает <tex>p</tex> на входе <tex>x</tex>. | ||
| + | Покажем, что такой декомпрессор будет лучше любого другого. <br> Пусть <tex>D</tex> {{---}} другой декомпрессор. По определению <tex>D</tex> {{---}} это алгоритм, значит есть программа, которая исполняет <tex>D</tex>. <br> | ||
| + | <tex>p</tex> {{---}} номер алгоритма <tex>D,\ p = \#D</tex>. Тогда:<br> | ||
| + | <tex>K_U(x) \leqslant K_D(x) + 2|p| + 2</tex>, т.к. <tex>K_D(x)</tex> достигается на <tex>D(y) = U(\hat{p}y) = x</tex>, т.е. для этого <tex>y</tex> есть строка <tex>\hat{p}y</tex>, которая даёт тот же самый результат и имеет длину не больше, чем на <tex>2|p| + 2</tex>. <br> | ||
| + | Нетрудно заметить, что <tex>2|p| + 2</tex> зависит только от <tex>D</tex>, но никак не зависит от <tex>x</tex>, т.е. является константой. <br> | ||
| + | Следовательно, <tex>U</tex> {{---}} оптимальный декомпрессор. | ||
}} | }} | ||
Версия 14:49, 4 января 2015
Колмогоровскую сложность можно рассматривать как способ измерения количества информации в строке.
Но как понять, какое количество информации содержит в себе строка? Один из классических способов — это подсчет количества битов (число, пропорциональное длине строки). Рассмотрим следующий пример:
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
Понятно, что эту строку можно описать более компактно на естественном языке, "128 нулей", всего 9 символов.
Можем дать следующее определение. Количество информации, которое несет строка — это размер архива, полученного сжатием строки каким-то конкретным архиватором (например, LZW). Это более нетривиальная задача, но мы можем придумать строку, которая явно несет в себе мало информации, но которую архиватор тем не менее не сожмет.
Еще более сильное определение. Количество информации, которое несет строка — это размер архива, сжатого максимальным образом, самым лучшим архиватором. Но тогда встает вопрос, почему такой архиватор существует. На самом деле он есть, и в некотором смысле колмогоровская сложность строки — это размер наименьшей программы, которая печатает эту строку.
Определения
| Определение: |
| Назовём декомпрессором алгоритм, восстанавливающий разжатый текст из сжатого. |
Примечание: для простоты мы будем рассматривать бинарный алфавит, но все утверждения мы можем обобщить на строки произвольного алфавита.
Относительно каждого декомпрессора мы можем определить понятие сложности строки:
| Определение: |
| Пусть , тогда назовем колмогоровской сложностью строки , размер минимальной строки , такой, что . Если такого не существует, тогда . |
Примеры
- , тогда
- , тогда
| Определение: |
| Будем говорить, что декомпрессор лучше, чем декомпрессор , если . |
| Теорема: |
Существует оптимальный декомпрессор , который лучше всех остальных. |
| Доказательство: |
|
Пусть — некоторая строка, . Обозначим за строку (мы удвоили каждый бит строки и добавили в конце ). |