Алгоритм Куна для поиска максимального паросочетания — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Алгоритм)
м (Реализация)
Строка 37: Строка 37:
  
 
* Граф <tex>G</tex> хранится списками смежности <tex>g[v][i]</tex>
 
* Граф <tex>G</tex> хранится списками смежности <tex>g[v][i]</tex>
* Функция <tex>dfs(v)</tex> {{---}} обход в глубину, возвращает <tex>true</tex>, если есть увеличивающая цепь из вершины <tex>v</tex>.
 
* В массиве <tex>matching</tex> хранятся паросочетания. Паросочетание есть ребро <tex>(i, matching[i])</tex>.
 
 
  
 
  '''bool''' '''dfs'''(v: '''int'''):
 
  '''bool''' '''dfs'''(v: '''int'''):
Строка 55: Строка 52:
 
     '''fill'''(matching, -1)
 
     '''fill'''(matching, -1)
 
     '''for''' v '''in''' V:
 
     '''for''' v '''in''' V:
           fill(used, '''false''')
+
           '''fill'''(used, '''false''')
 
           '''dfs'''(v)
 
           '''dfs'''(v)
 
     '''for''' v '''in''' V:
 
     '''for''' v '''in''' V:

Версия 16:30, 11 января 2015

Теорема

Теорема:
Если из вершины [math]x[/math] не существует дополняющей цепи относительно паросочетания [math]M[/math] и паросочетание [math]M'[/math] получается из [math]M[/math] изменением вдоль дополняющей цепи, тогда из [math]x[/math] не существует дополняющей цепи в [math]M'[/math].
Доказательство:
[math]\triangleright[/math]
Рисунок 1.
Рисунок 2.
Пунктиром обозначен путь между двумя вершинами. Ребро красного цвета лежит в паросочетании, а черного - нет.
Доказательство от противного.

Допустим в паросочетание внесли изменения вдоль дополняющей цепи [math](y \rightsquigarrow z)[/math] и из вершины [math]x[/math] появилась дополняющая цепь.
Заметим, что эта дополняющая цепь должна вершинно пересекаться с той цепью, вдоль которой вносились изменения, иначе такая же дополняющая цепь из [math]x[/math] существовала и в исходном паросочетании.

Пусть [math]p[/math] — ближайшая к [math]x[/math] вершина, которая принадлежит и новой дополняющей цепи и цепи [math](y \rightsquigarrow z)[/math].
Тогда [math]MP[/math] - последнее ребро на отрезке [math](y \rightsquigarrow p)[/math] цепи [math](y \rightsquigarrow z)[/math], [math]NP[/math] - последнее ребро на отрезке [math](z \rightsquigarrow p)[/math] цепи [math](y \rightsquigarrow z)[/math], [math]QP[/math] - последнее ребро лежащее на отрезке [math](x \rightsquigarrow p)[/math] новой дополняющей цепи(см. Рисунок 1).

Допустим [math]MP[/math] принадлежит паросочетанию [math]M'[/math], тогда [math]NP[/math] ему не принадлежит.
(Случай, когда [math]NP[/math] принадлежит паросочетанию [math]M'[/math] полностью симметричен.)

Поскольку паросочетание [math]M'[/math] получается из [math]M[/math] изменением вдоль дополняющей цепи [math](y \rightsquigarrow z)[/math], в паросочетание [math]M[/math] входило ребро [math]NP[/math], а ребро [math]MP[/math] нет.
Кроме того, ребро [math]QP[/math] не лежит ни в исходном паросочетании [math]M[/math], ни в паросочетании [math]M'[/math], в противном случае оказалось бы, что вершина [math]p[/math] инцидентна нескольким ребрам из паросочетания, что противоречит определению паросочетания.

Тогда заметим, что цепь [math](x \rightsquigarrow z)[/math], полученная объединением цепей [math](x \rightsquigarrow p)[/math] и [math](p \rightsquigarrow z)[/math], по определению будет дополняющей в паросочетании [math]M[/math], что приводит к противоречию, поскольку в паросочетании [math]M[/math] из вершины [math]x[/math] не существует дополняющей цепи.
[math]\triangleleft[/math]

Алгоритм

Задан граф [math]G(V, E)[/math], про который известно, что он двудольный, но разбиение не задано явно.Требуется найти наибольшее паросочетание в нем

Алгоритм можно описать так: сначала возьмём пустое паросочетание, а потом — пока в графе удаётся найти увеличивающую цепь, — будем выполнять чередование паросочетания вдоль этой цепи, и повторять процесс поиска увеличивающей цепи. Как только такую цепь найти не удалось — процесс останавливаем, — текущее паросочетание и есть максимальное.

В массиве [math]matching[/math] хранятся паросочетания [math] (v, matching[v]) [/math] (Если паросочетания с вершиной [math] v [/math] не существует, то [math] matching[v] [/math] = -1). А [math]used[/math] - обычный массив "посещённостей" вершин в обходе в глубину (он нужен, чтобы обход в глубину не заходил в одну вершину дважды). Функция [math] \mathrm{dfs} [/math] возвращает [math]true[/math], если ей удалось найти увеличивающую цепь из вершины [math]v[/math], при этом считается, что эта функция уже произвела чередование паросочетания вдоль найденной цепи.

Внутри функции просматриваются все рёбра, исходящие из вершины [math]v[/math] первой доли, и затем проверяется: если это ребро ведёт в ненасыщенную вершину [math] to[/math], либо если эта вершина [math]to[/math] насыщена, но удаётся найти увеличивающую цепь рекурсивным запуском из [math]mt[to][/math], то мы говорим, что мы нашли увеличивающую цепь, и перед возвратом из функции с результатом [math]true[/math] производим чередование в текущем ребре: перенаправляем ребро, смежное с [math]to[/math], в вершину [math] v[/math].

В основной программе сначала указывается, что текущее паросочетание — пустое (список [math] mt[/math] заполняется числами -1). Затем перебирается вершина [math]v [/math] первой доли, и из неё запускается обход в глубину [math] \mathrm{dfs} [/math], предварительно обнулив массив [math] used[/math].

Стоит заметить, что размер паросочетания легко получить как число вызовов [math] \mathrm{dfs} [/math] в основной программе, вернувших результат [math] true [/math]. Само искомое максимальное паросочетание содержится в массиве [math] mt [/math]. После того, как все вершины [math]v \in V[/math] будут просмотрены, текущее паросочетание будет максимальным. Корректность алгоритма следует из теоремы о максимальном паросочетании и дополняющих цепях и теоремы, описанной выше.

Реализация

  • Граф [math]G[/math] хранится списками смежности [math]g[v][i][/math]
bool dfs(v: int):
    if (used[v]):
        return false
    used[v] = true;
    for to in g[v]:
        if (matching[to] == -1 or dfs(matching[to])):
            matching[to] = v
            return true    
    return false


function main():
    fill(matching, -1)
    for v in V:
         fill(used, false)
         dfs(v)
    for v in V:
         if (matching[v] != -1):
              print(v, " ", matching[v])

Время работы

Итак, алгоритм Куна можно представить как серию из [math]n_1[/math] запусков обхода в глубину на всём графе.
Следовательно, всего этот алгоритм исполняется за время [math]O(nm)[/math], где [math]m[/math] — количество ребер, что в худшем случае есть [math]O(n^3)[/math].
Более точная оценка:
В описанной выше реализации запуски обхода в глубину/ширину происходят только из вершин первой доли, поэтому весь алгоритм исполняется за время [math]O(n_1m)[/math] , где [math]n_1[/math] — число вершин первой доли. В худшем случае это составляет [math]O(n_1^2n_2)[/math], где [math]n_2[/math] — число вершин второй доли.

Ссылки

Источники