Использование обхода в глубину для топологической сортировки — различия между версиями
Shersh (обсуждение | вклад) (→Источники) |
|||
Строка 56: | Строка 56: | ||
*Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн — Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — с.653 — 656.— ISBN 978-5-8459-0857-5 (рус.) | *Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн — Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — с.653 — 656.— ISBN 978-5-8459-0857-5 (рус.) | ||
* [http://habrahabr.ru/blogs/algorithm/100953/#habracut Топологическая сортировка на habrahabr] | * [http://habrahabr.ru/blogs/algorithm/100953/#habracut Топологическая сортировка на habrahabr] | ||
− | * [http://e-maxx.ru/algo/finding_cycle MAXimal :: algo | + | * [http://e-maxx.ru/algo/finding_cycle MAXimal :: algo :: Топологическая сортировка] |
* [http://informatics.mccme.ru/mod/statements/view3.php?id=256&chapterid=166# Пример задачи на топологическую сортировку] | * [http://informatics.mccme.ru/mod/statements/view3.php?id=256&chapterid=166# Пример задачи на топологическую сортировку] | ||
[[Категория: Алгоритмы и структуры данных]] | [[Категория: Алгоритмы и структуры данных]] | ||
[[Категория: Обход в глубину]] | [[Категория: Обход в глубину]] |
Версия 21:50, 11 января 2015
Определение: |
Топологическая сортировка ориентированного ациклического графа представляет собой упорядочение вершин таким образом, что для любого ребра номер вершины меньше номера вершины . |
Применение
Топологическая сортировка применяется в самых разных ситуациях, например при создании параллельных алгоритмов, когда по некоторому описанию алгоритма нужно составить граф зависимостей его операций и, отсортировав его топологически, определить, какие из операций являются независимыми и могут выполняться параллельно (одновременно). Примером использования топологической сортировки может служить создание карты сайта, где имеет место древовидная система разделов. Также топологическая сортировка применяется при обработке исходного кода программы в некоторых компиляторах и IDE, где строится граф зависимостей между сущностями, после чего они инициализируются в нужном порядке, либо выдается ошибка о циклической зависимости.
Постановка задачи
Теорема: | ||||||
— ациклический ориентированный граф, тогда | ||||||
Доказательство: | ||||||
Определим алгоритма dfs. Рассмотрим функцию . Очевидно, что такая функция подходит под критерий функции из условия теоремы, если выполняется следующее утверждение: как порядковый номер окраски вершины в черный цвет в результате работы
| ||||||
Алгоритм
Из определения функции
мгновенно следует алгоритм топологической сортировки://— исходный граф function проверить граф на ацикличность for if not function for if not
Время работы этого алгоритма соответствует времени работы алгоритма поиска в глубину, то есть равно .
Пример
Распространённая задача на топологическую сортировку — следующая. Есть
переменных, значения которых нам неизвестны. Известно лишь про некоторые пары переменных, что одна переменная меньше другой. Требуется проверить, не противоречивы ли эти неравенства, и если нет, выдать переменные в порядке их возрастания (если решений несколько — выдать любое). Легко заметить, что это в точности и есть задача о поиске топологической сортировки в графе из вершин.См. также
- Использование обхода в глубину для поиска цикла
- Использование обхода в глубину для проверки связности
- Использование обхода в глубину для поиска компонент сильной связности
- Использование обхода в глубину для поиска точек сочленения
- Использование обхода в глубину для поиска мостов
Источники
- Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн — Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — с.653 — 656.— ISBN 978-5-8459-0857-5 (рус.)
- Топологическая сортировка на habrahabr
- MAXimal :: algo :: Топологическая сортировка
- Пример задачи на топологическую сортировку