Задача коммивояжера, ДП по подмножествам — различия между версиями
|  (→Реализация) | Shersh (обсуждение | вклад)  м (→Оптимизация решения) | ||
| Строка 43: | Строка 43: | ||
| 1&;\ |mask| = 1,\ mask_i = 1\\ | 1&;\ |mask| = 1,\ mask_i = 1\\ | ||
| \bigvee_{mask[j]=1, (j, i) \in E}\limits d[mask \oplus 2^i][j] &;\ |mask| > 1,\ mask_i= 1 \\ | \bigvee_{mask[j]=1, (j, i) \in E}\limits d[mask \oplus 2^i][j] &;\ |mask| > 1,\ mask_i= 1 \\ | ||
| − |  0&;\  | + |  0&;\ otherwise\\ | 
| \end{array}\right. | \end{array}\right. | ||
| </tex> | </tex> | ||
| Строка 56: | Строка 56: | ||
| 2^i&;\ |mask| = 1,\ mask_i = 1\\ | 2^i&;\ |mask| = 1,\ mask_i = 1\\ | ||
| \sum_{j \in [0..n-1]}\limits 2^i \cdot ((d[mask \oplus 2^i] \& M_i) \neq 0?1:0) &;\ |mask| > 1 \\ | \sum_{j \in [0..n-1]}\limits 2^i \cdot ((d[mask \oplus 2^i] \& M_i) \neq 0?1:0) &;\ |mask| > 1 \\ | ||
| − |  0&;\  | + |  0&;\ otherwise\\ | 
| \end{array}\right. | \end{array}\right. | ||
| </tex> | </tex> | ||
Версия 22:21, 15 января 2015
| Задача: | 
| Задача о коммивояжере (англ. Travelling salesman problem, TSP) — задача, в которой коммивояжер должен посетить городов, побывав в каждом из них ровно по одному разу и завершив путешествие в том городе, с которого он начал. В какой последовательности ему нужно обходить города, чтобы общая длина его пути была наименьшей? | 
Содержание
Варианты решения
NP-полнота задач о гамильтоновом цикле и пути в графах
Так вот задача о коммивояжере относится к классу NP-полных задач. Поэтому, рассмотрим два варианта решения с экспоненциальным временем работы.
Перебор перестановок
Можно решить задачу перебором всевозможных перестановок. Для этого нужно сгенерировать все всевозможных перестановок вершин исходного графа, подсчитать для каждой перестановки длину маршрута и выбрать минимальный из них. Но тогда задача оказывается неосуществимой даже для достаточно небольших . Сложность алгоритма .
Динамическое программирование по подмножествам (по маскам)
Задача о коммивояжере представляет собой поиск кратчайшего гамильтонова цикла в графе.
Смоделируем данную задачу при помощи графа. При этом вершинам будут соответствовать города, а ребрам — дороги. Пусть в графе вершин, пронумерованных от до и каждое ребро имеет некоторый вес . Необходимо найти гамильтонов цикл, сумма весов по ребрам которого минимальна.
Зафиксируем начальную вершину и будем искать гамильтонов цикл наименьшей стоимости — путь от до , проходящий по всем вершинам (кроме первоначальной) один раз. Т.к. искомый цикл проходит через каждую вершину, то выбор не имеет значения. Поэтому будем считать .
Подмножества вершин будем кодировать битовыми векторами, обозначим значение -ого бита в векторе .
Обозначим как наименьшую стоимость пути из вершины в вершину , проходящую (не считая вершины ) единожды по всем тем и только тем вершинам , для которых (т.е. уже найденный оптимальный путь от -ой вершины до -ой, проходящий через те вершины, где . Если ,то эти вершины еще не посещены).
- Начальное состояние — когда находимся в 0-й вершине, ни одна вершина не посещена, а пройденный путь равен (т.е. и ).
- Для остальных состояний ( или ) перебираем все возможные переходы в -ую вершину из любой посещенной ранее и выбираем минимальный результат.
- Если возможные переходы отсутствуют, решения для данной подзадачи не существует (обозначим ответ для такой подзадачи как ).
Стоимостью минимального гамильтонова цикла в исходном графе будет значение — стоимость пути из -й вершины в -ю, при необходимости посетить все вершины. Данное решение требует памяти и времени.
Для того, чтобы восстановить сам путь, воспользуемся соотношением , которое выполняется для всех ребер, входящих в минимальный цикл . Начнем с состояния , , найдем вершину , для которой выполняется указанное соотношение, добавим в ответ, пересчитаем текущее состояние как , . Процесс заканчивается в состоянии , .
Оптимизация решения
Пусть содержит булево значение — существует ли в подмножества гамильтонов путь, заканчивающийся в вершине .
Сама динамика будет такая: 
Это решение требует памяти и времени. Эту оценку можно улучшить, если изменить динамику следующим образом.
Пусть теперь хранит маску подмножества всех вершин, для которых существует гамильтонов путь в подмножестве , заканчивающихся в этой вершине. Другими словами, сожмем предыдущую динамику: будет равно . Для графа выпишем масок , для каждой вершины задающие множество вершин, которые связаны ребром в данной вершиной. То есть .
Тогда динамика перепишется следующим образом: 
Особое внимание следует уделить выражению . Первая часть выражения содержит подмножество вершин, для которых существует гамильтонов путь, заканчивающихся в соответствующих вершинах в подмножестве без вершины , а вторая — подмножество вершин, связанных с ребром. Если эти множества пересекаются хотя бы по одной вершине (их не равен ), то, как нетрудно понять, в существует гамильтонов путь, заканчивающийся в вершине .
Окончательная проверка состоит в сравнении c .
Это решение использует памяти и имеет асимптотику .
Реализация
Прежде чем писать код, скажем пару слов о порядке обхода состояний. Обозначим за количество единиц в маске (иначе говоря количество пройденных вершин не считая текущей). Тогда, поскольку при рассмотрении состояния мы смотрим на состояния
, и , то состояния с большим должны быть посещены позже, чтобы к моменту вычисления текущего состояния были вычислены все те, которые используются для его подсчёта. Однако если использовать рекурсию, об этом можно не беспокоиться (и сэкономить немало кода, времени и памяти).
//Все переменные используются из описания алгоритма, = бесконечность function findCheapest(i, mask): if d[i][mask] != return d[i][mask] for j = 0 .. n - 1 if w(i, j) существует and j-ый бит mask == 1 d[i][mask] = min(d[i][mask], findCheapest(j, mask - 2 ** j) + w(i, j)) return d[i][mask] for i = 0 .. n - 1 for mask = 0 .. 2 ** n - 1 d[i][mask] = d[0][0] = 0; ans = findCheapest(0, 2 ** n - 1) if ans == exit
Дальше ищем сам путь:
 i = 0
 mask = 2 ** n - 1
 path.push(0)
 while mask != 0
   for j = 0 .. n - 1
     if w(i, j) существует and j-ый бит mask == 1 and d[i][mask] == d[j][mask - 2 ** j] + w(i, j) 
       path.push(j)
       i = j
       mask = mask - 2 ** j
       continue
См. также
- Кратчайший путь в ациклическом графе
- Задача о наибольшей общей подпоследовательности
- Задача о наибольшей возрастающей подпоследовательности
- Задача о рюкзаке
- Алгоритм нахождения Гамильтонова цикла в условиях теорем Дирака и Оре
- Гамильтоновы графы
Источники информации
- Романовский И. В. Дискретный анализ. СПб.: Невский Диалект; БХВ-Петербург, 2003. ISBN 5-7940-0114-3
- Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, 2-е издание. М.: Издательский дом "Вильямс", 2005. ISBN 5-8459-0857-4
