Куча Бродала-Окасаки — различия между версиями
Kirelagin (обсуждение | вклад) (→Структура: Нормальные обозначения) |
Kirelagin (обсуждение | вклад) (→Merge: Нормальные обозначения) |
||
Строка 31: | Строка 31: | ||
Слияние выполняется выбором минимума из двух значений <tex>T_{min}</tex> и добавлением в приоритетную очередь второго <tex> BPQ </tex>. | Слияние выполняется выбором минимума из двух значений <tex>T_{min}</tex> и добавлением в приоритетную очередь второго <tex> BPQ </tex>. | ||
<code> | <code> | ||
− | '''BPQ''' merge(< | + | '''BPQ''' merge'('''<'''x:'''int''', q:'''PQ>''', '''<'''y:'''int''', r:'''PQ>'''): |
'''if''' x < y | '''if''' x < y | ||
− | '''return''' | + | '''return''' <x, insert(q, <y, r>)> |
'''else''' | '''else''' | ||
− | '''return''' | + | '''return''' <y, insert(r, <x, q>)> |
</code> | </code> | ||
− | Здесь <math>\mathrm{insert}</math> это добавление в приоритетную очередь работает за <tex>O(1)</tex>, | + | Здесь <math>\mathrm{insert}</math> это добавление в приоритетную очередь. Если оно работает за <tex>O(1)</tex>, то <math>\mathrm{merge}</math> работает за <tex>O(1)</tex>. |
=== Insert === | === Insert === |
Версия 18:08, 22 января 2015
Куча Бродала-Окасаки (англ. Brodal's and Okasaki's Priority Queue) — основана на использовании биномиальной кучи без каскадных ссылок, добавлении минимального элемента и на идеи Data-structural bootstrapping. Первое позволяет делать за , второе позволяет получать минимальный элемент за , а третье — позволяющей выполнить за . Удаление минимума работает за в худшем случае. Эти оценки являются асимптотически оптимальными среди всех основанных на сравнении приоритетных очередей.
Содержание
Структура
Используем идею, которую Тарьян и Буксбаум называют Data-structural bootstrapping.
Создадим структуру Bootstrapping Priority Queues, которая будет хранить пару из минимального элемента и приоритетную очередь. Элементами приоритетной очереди будут Bootstrapping Priority Queues упорядоченные по :
BPQ = <int, PQ(BPQ)>
Куча из одного элемента создается так:
BPQ singleton'(x:int): return <x, null>
Данная структура не будет бесконечной, так как каждый раз в приоритетной очереди будет храниться на один элемент меньше, таким образом образуя иерархическую структуру. Каждое значение храниться в одном из значений
Операции
Merge
Слияние выполняется выбором минимума из двух значений
BPQ merge'(<x:int, q:PQ>, <y:int, r:PQ>): if x < y return <x, insert(q, <y, r>)> else return <y, insert(r, <x, q>)>
Здесь
это добавление в приоритетную очередь. Если оно работает за , то работает за .Insert
Это создание нового
int, BPQ insert( x:int, q:BPQ , y:int): return merge( x, q , create(y))
Создание и
выполняются за , тогда работает за .getMin
Выполняется просто, так как
int getMin(x:int, q:BPQ ): return x
Очевидно, работает за
.extractMin
Минимальный элемент хранится в верхнем
int, BPQ extractMin( x:int, q:BPQ ): y, r , t = extractMin(q) return y, merge(r, t)
Здесь
— это функция, извлекающая минимальный элемент типа из приоритетной очереди, она возвращает — минимальный элемент типа и остаток от приоритетной очереди после извлечение минимума — . функция, выполняющая слияние двух приоритетных очередей.Возвращаем
, где — новый минимальный элемент, и приоритетная очередь без элемента .Так как
и выполняются за , тогда выполняется за .