Симметричное отношение — различия между версиями
Svyd (обсуждение | вклад) (Новая страница: «== Определение == Бинарное отношение <math>R</math> на множестве X называется '''симметричным''', е…») |
Svyd (обсуждение | вклад) (→Определение) |
||
Строка 1: | Строка 1: | ||
− | + | {{Определение | |
+ | |definition = | ||
Бинарное [[отношение]] <math>R</math> на множестве X называется '''симметричным''', если для каждой пары элементов множества <math>(a, b)</math> выполнение отношения <math>a\,R\,b</math> влечёт выполнение отношения <math>b\,R\,a</math>. | Бинарное [[отношение]] <math>R</math> на множестве X называется '''симметричным''', если для каждой пары элементов множества <math>(a, b)</math> выполнение отношения <math>a\,R\,b</math> влечёт выполнение отношения <math>b\,R\,a</math>. | ||
Формально, [[отношение]] <math>R</math> симметрично, если <math>\forall a, b \in X,\ a\,R\,b \Rightarrow b\,R\,a</math>. | Формально, [[отношение]] <math>R</math> симметрично, если <math>\forall a, b \in X,\ a\,R\,b \Rightarrow b\,R\,a</math>. | ||
+ | }} | ||
== Примеры == | == Примеры == |
Версия 04:23, 29 октября 2010
Определение: |
Бинарное отношение на множестве X называется симметричным, если для каждой пары элементов множества выполнение отношения влечёт выполнение отношения . Формально, отношение симметрично, если . |
Примеры
Любое отношение эквивалентности, по определению, является симметричным (а также рефлексивным и транзитивным). Также симметрично отношение связи вершин графа (неориентированного).
Не являются симметричными (за исключением случая тождественной ложности отношения) отношения порядка (как полного, так и частичного), а также отношение следования вершин ориентированного графа.