Симметричное отношение — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Определение)
Строка 1: Строка 1:
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
Бинарное [[отношение]] <math>R</math> на множестве X называется '''симметричным''', если для каждой пары элементов множества <math>(a, b)</math> выполнение отношения <math>a\,R\,b</math> влечёт выполнение отношения <math>b\,R\,a</math>.
+
Бинарное [[отношение]] <tex>R</tex> на множестве <tex>X</tex> называется '''симметричным''', если для каждой пары элементов множества <tex>(a, b)</tex> выполнение отношения <tex>a\,R\,b</tex> влечёт выполнение отношения <tex>b\,R\,a</tex>.
  
Формально, [[отношение]] <math>R</math> симметрично, если <math>\forall a, b \in X,\ a\,R\,b \Rightarrow b\,R\,a</math>.
+
Формально, [[отношение]] <tex>R</tex> симметрично, если <tex>\forall a, b \in X,\ a\,R\,b \Rightarrow b\,R\,a</tex>.
 
}}
 
}}
  

Версия 04:26, 29 октября 2010

Определение:
Бинарное отношение [math]R[/math] на множестве [math]X[/math] называется симметричным, если для каждой пары элементов множества [math](a, b)[/math] выполнение отношения [math]a\,R\,b[/math] влечёт выполнение отношения [math]b\,R\,a[/math]. Формально, отношение [math]R[/math] симметрично, если [math]\forall a, b \in X,\ a\,R\,b \Rightarrow b\,R\,a[/math].


Примеры

Любое отношение эквивалентности, по определению, является симметричным (а также рефлексивным и транзитивным). Также симметрично отношение связи вершин графа (неориентированного).

Не являются симметричными (за исключением случая тождественной ложности отношения) отношения порядка (как полного, так и частичного), а также отношение следования вершин ориентированного графа.