Дерево Фенвика — различия между версиями
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Дерево Фе́нвика (Binary indexed tree | + | '''Дерево Фе́нвика''' (англ. ''Binary indexed tree'') — структура данных, требующая <tex> O(n) </tex> памяти и позволяющая эффективно (за <tex> O(\log n) </tex>) |
# изменять значение любого элемента в массиве; | # изменять значение любого элемента в массиве; | ||
# выполнять некоторую ассоциативную, коммутативную, обратимую операцию <tex> G </tex> на отрезке <tex> [i, j] </tex>. | # выполнять некоторую ассоциативную, коммутативную, обратимую операцию <tex> G </tex> на отрезке <tex> [i, j] </tex>. | ||
Строка 9: | Строка 9: | ||
Пусть дан массив <tex> A </tex> из <tex> n </tex> элементов: <tex> a_i, i = 0 .. n - 1 </tex>.<br/> | Пусть дан массив <tex> A </tex> из <tex> n </tex> элементов: <tex> a_i, i = 0 .. n - 1 </tex>.<br/> | ||
− | Деревом Фенвика будем называть массив <tex> T </tex> из <tex> n </tex> элементов: <tex> T_i = \sum\limits_{k = F(i)}^{i} a_k, i = 0 .. n - 1 </tex>, где <tex> F(i) </tex> | + | Деревом Фенвика будем называть массив <tex> T </tex> из <tex> n </tex> элементов: <tex> T_i = \sum\limits_{k = F(i)}^{i} a_k, i = 0 .. n - 1 </tex>, где <tex> F(i) </tex> — некоторая функция. |
От выбора функции зависит время работы операций над деревом. Рассмотрим функцию, позволяющую делать обе операции за время <tex> O(\log n) </tex>. | От выбора функции зависит время работы операций над деревом. Рассмотрим функцию, позволяющую делать обе операции за время <tex> O(\log n) </tex>. | ||
<tex> F(i) = i - 2^{h(i)} + 1, </tex> где <tex> h(i) </tex> - количество единиц в конце бинарной записи числа <tex> i </tex>. Эту функцию можно записать так: <tex> F(i) = i - t(i), </tex> где <tex> t(i) = 2^{h(i)} - 1, </tex> то есть число, состоящее из <tex> i </tex> единиц. Это значит, что функция заменяет все подряд идущие единицы в конце числа на нули. | <tex> F(i) = i - 2^{h(i)} + 1, </tex> где <tex> h(i) </tex> - количество единиц в конце бинарной записи числа <tex> i </tex>. Эту функцию можно записать так: <tex> F(i) = i - t(i), </tex> где <tex> t(i) = 2^{h(i)} - 1, </tex> то есть число, состоящее из <tex> i </tex> единиц. Это значит, что функция заменяет все подряд идущие единицы в конце числа на нули. | ||
− | Эта функция задается простой формулой: <tex> F(i) = i \And (i + 1) </tex>, где <tex> \And </tex> — это операция побитового логического "И". При побитовом "И" числа и | + | Эта функция задается простой формулой: <tex> F(i) = i \And (i + 1) </tex>, где <tex> \And </tex> — это операция побитового логического "И". При побитовом "И" числа и его значения, увеличенного на единицу, мы получаем это число без последних подряд идущих единиц. |
== Запрос изменения элемента == | == Запрос изменения элемента == | ||
Строка 46: | Строка 46: | ||
Напишем функцию, которая будет изменять элемент <tex>a_i</tex> на <tex>d</tex>, и при этом меняет соответствующие частичные суммы. | Напишем функцию, которая будет изменять элемент <tex>a_i</tex> на <tex>d</tex>, и при этом меняет соответствующие частичные суммы. | ||
− | modify(i, d): | + | '''function''' modify(i, d): |
− | while i < N | + | '''while''' i < N |
t[i] += d | t[i] += d | ||
i = i | (i + 1) | i = i | (i + 1) | ||
Строка 72: | Строка 72: | ||
=== Реализация === | === Реализация === | ||
− | Приведем код функции <tex> \mathrm sum(i) </tex> | + | Приведем код функции <tex> \mathrm sum(i) </tex>: |
− | + | '''int''' sum(i): | |
− | + | result = 0; | |
− | + | '''while''' i >= 0 | |
− | |||
− | while | ||
− | |||
result += t[i]; | result += t[i]; | ||
i = f(i) - 1; | i = f(i) - 1; | ||
− | + | '''return''' result; | |
− | |||
− | |||
− | |||
==Преимущества и недостатки дерева Фенвика== | ==Преимущества и недостатки дерева Фенвика== |
Версия 20:09, 16 апреля 2015
Определение: |
Дерево Фе́нвика (англ. Binary indexed tree) — структура данных, требующая
| памяти и позволяющая эффективно (за )
Впервые описано Питером Фенвиком в 1994 году.
Пусть дан массив
Деревом Фенвика будем называть массив из элементов: , где — некоторая функция.
От выбора функции зависит время работы операций над деревом. Рассмотрим функцию, позволяющую делать обе операции за время .
где - количество единиц в конце бинарной записи числа . Эту функцию можно записать так: где то есть число, состоящее из единиц. Это значит, что функция заменяет все подряд идущие единицы в конце числа на нули.
Эта функция задается простой формулой:
, где — это операция побитового логического "И". При побитовом "И" числа и его значения, увеличенного на единицу, мы получаем это число без последних подряд идущих единиц.Содержание
Запрос изменения элемента
Лемма: |
Нам надо научиться быстро изменять частичные суммы в зависимости от того, как изменяются элементы. Рассмотрим как изменять величину на величину .
Необходимо изменить элементы дерева , для которых верно неравенство . |
Доказательство: |
необходимо менять те , для которых попадает в необходимые удовлетворяют условию . |
Лемма: |
Можно перебрать все , попадающие под неравенство по формуле , где — это операция побитового логического "ИЛИ". |
Доказательство: |
Первый элемент последовательности само | . Для него выполняется равенство, так как . По формуле мы заменим первый ноль на единицу. Неравенство при этом сохранится, так как осталось прежним или уменьшилось, а увеличилось. Можем заметить, что если количество единиц в конце не будет совпадать с , то формула нарушит неравенство, потому что либо само будет меньше, чем k, либо станет больше, чем . Таким образом, перебраны будут только нужные элементы
Все
мы можем получить следующим образом : . Следующим элементом в последовательности будет элемент, у которого первый с конца ноль превратится в единицу. Можно заметить, что если к исходному элементу прибавить единицу, то необходимый ноль обратится в единицу, но при этом все следующие единицы обнулятся. Чтобы обратно их превратить в единицы, применим операцию побитового ИЛИ. Таким образом все нули в конце превратятся в единицы и мы получим нужный элемент. Для того, чтобы понять, что эта последовательность верна, достаточно посмотреть на таблицу.
Несложно заметить, что данная последовательность строго возрастает и в худшем случае будет применена логарифм раз, так как добавляет каждый раз по одной единице в двоичном разложении числа .
Напишем функцию, которая будет изменять элемент на , и при этом меняет соответствующие частичные суммы.
function modify(i, d): while i < N t[i] += d i = i | (i + 1)
Запрос получения суммы на префиксе
В качестве бинарной операции
Обозначим . Тогда .
Лемма: |
входит в сумму для , если . |
Для доказательства леммы рассмотрим битовую запись следующих чисел:
Реализация
Приведем код функции
:int sum(i): result = 0; while i >= 0 result += t[i]; i = f(i) - 1; return result;
Преимущества и недостатки дерева Фенвика
Главными преимуществами данной конструкции являются простота реализации и быстрота ответов на запросы за
. Также дерево Фенвика позволяет быстро изменять значения в массиве и находить некоторые функции от элементов массива. Недостатком является то, что при изменении одного элемента исходного массива, приходится пересчитывать частичные суммы, а это затратно по времени.