Мастер-теорема — различия между версиями
Timur (обсуждение | вклад) |
Timur (обсуждение | вклад) |
||
Строка 12: | Строка 12: | ||
</tex> | </tex> | ||
− | где <math>a</math> — количество подзадач, на которые мы разбиваем нашу задачу, <math>n</math> — размер нашей задачи, <tex dpi = " | + | где <math>a</math> — количество подзадач, на которые мы разбиваем нашу задачу, <math>n</math> — размер нашей задачи, <tex dpi = "125">\dfrac{n}{b}</tex> — размер подзадачи, <math> n ^ {c} </math> — стоимость работы, проделанной рекурсивными вызовами, который включает в себя стоимость деления проблемы и стоимость слияния решения подзадач, <math>d</math> — единичная стоимость для данной задачи. |
Пусть <math>a</math> — <math>\mathbb N </math> число большее 1, <math>b</math> — <math>\mathbb R </math> число большее 1, пусть также <math>c</math> — <math>\mathbb R^{+} </math> число и <math>d</math> — <math>\mathbb R^{+} </math> , тогда решение данного рекуррентного соотношения разбивается на три возможных случая: | Пусть <math>a</math> — <math>\mathbb N </math> число большее 1, <math>b</math> — <math>\mathbb R </math> число большее 1, пусть также <math>c</math> — <math>\mathbb R^{+} </math> число и <math>d</math> — <math>\mathbb R^{+} </math> , тогда решение данного рекуррентного соотношения разбивается на три возможных случая: | ||
Строка 31: | Строка 31: | ||
Откуда получаем: | Откуда получаем: | ||
− | 1. <math>\log_b a < c </math> <math>\Rightarrow</math> <math>T(n) = \Theta\left( n^{c} \right)</math> (т.к. <tex dpi = "130"> (\ | + | 1. <math>\log_b a < c </math> <math>\Rightarrow</math> <math>T(n) = \Theta\left( n^{c} \right)</math> (т.к. <tex dpi = "130"> (\dfrac{a}{b^c})^i</tex> убывающая геометрическая прогрессия) |
2. <math>\log_b a = c </math> <math>\Rightarrow</math> <tex dpi = "125"> T(n) = \displaystyle\sum_{i=1}^{\log_b n}n^c\cdot(\frac{a}{b^c})^i = </tex> <tex dpi = "125> n^c\cdot\displaystyle\sum_{i=1}^{\log_b n}(\frac{a}{b^c})^i = n^c\cdot\displaystyle\sum_{i=1}^{\log_b n}1^i = n^c + n^c\log_b n = \Theta\left( n^{c} \log n \right) </tex> | 2. <math>\log_b a = c </math> <math>\Rightarrow</math> <tex dpi = "125"> T(n) = \displaystyle\sum_{i=1}^{\log_b n}n^c\cdot(\frac{a}{b^c})^i = </tex> <tex dpi = "125> n^c\cdot\displaystyle\sum_{i=1}^{\log_b n}(\frac{a}{b^c})^i = n^c\cdot\displaystyle\sum_{i=1}^{\log_b n}1^i = n^c + n^c\log_b n = \Theta\left( n^{c} \log n \right) </tex> | ||
Строка 66: | Строка 66: | ||
</math> | </math> | ||
− | |||
<math>f(n) = n\sqrt {n + 1} < n\sqrt{n + n} < n\sqrt{2n} = O(n^{3/2}) </math> | <math>f(n) = n\sqrt {n + 1} < n\sqrt{n + n} < n\sqrt{2n} = O(n^{3/2}) </math> | ||
Строка 75: | Строка 74: | ||
*:<math>a</math> не является константой; количество подзадач может меняться | *:<math>a</math> не является константой; количество подзадач может меняться | ||
*<math>T(n) = 2T\left (\frac{n}{2}\right )+\frac{n}{\log n}</math> | *<math>T(n) = 2T\left (\frac{n}{2}\right )+\frac{n}{\log n}</math> | ||
− | *:не полиномиальное различие <math>f(n)</math> и < | + | *:не полиномиальное различие <math>f(n)</math> и <tex dpi = "140">n^{\log_b a}</tex>, т.к. <tex dpi = "145">\frac{f(n)}{n^{\log_b a}} = \frac{\frac{n}{\log n}}{n^{log_2 2}} = \frac{n}{n \log n} = \frac{1}{\log n} < n^\epsilon</tex>, для любого <tex dpi = "145">\epsilon > 0</tex> |
*<math>T(n) = 0.5T\left (\frac{n}{2}\right )+n</math> | *<math>T(n) = 0.5T\left (\frac{n}{2}\right )+n</math> | ||
*:<math>a</math> < 1 не может быть меньше одной подзадачи | *:<math>a</math> < 1 не может быть меньше одной подзадачи |
Версия 14:02, 7 мая 2015
Мастер теорема (англ. Master theorem) позволяет найти асимптотическое решение рекуррентных соотношений, которые могут возникнуть в анализе асимптотики многих алгоритмов. Однако не все рекуррентные соотношения могут быть решены через мастер теорему, ее обобщения включаются в метод Акра-Бацци.
Содержание
Формулировка и доказательство мастер-теоремы
Теорема: |
Пусть, при реализации алгоритма мы получили соотношение такого вида:
где — количество подзадач, на которые мы разбиваем нашу задачу, — размер нашей задачи, — размер подзадачи, — стоимость работы, проделанной рекурсивными вызовами, который включает в себя стоимость деления проблемы и стоимость слияния решения подзадач, — единичная стоимость для данной задачи. Пусть — число большее 1, — число большее 1, пусть также — число и — , тогда решение данного рекуррентного соотношения разбивается на три возможных случая:1. Если , то2. Если 3. Если , то , то |
Доказательство: |
Для доказательства мы установим , это требуется для того, чтобы при рекурсивном спуске не возникало огромных вычислений. Давайте рассмотрим дерево рекурсии. Всего в нем будет уровней. На каждом таком уровне, количество подзадач будет умножаться на , так на уровне будет подзадач. Также известно, что каждая подзадача на уровне размера . Подзадача размера требует дополнительных затрат, поэтому общее количество совершенных операций на уровне : Заметим, что количество операций увеличивается, уменьшается и остается константой, если увеличивается, уменьшается или остается константой соответственно. Поэтому мы должны разобрать три случая, когда больше , равен или меньше . Рассмотрим . Распишем всю работу в течение рекурсивного спуска: Откуда получаем:1. (т.к. убывающая геометрическая прогрессия)2. 3. , но |
Примеры
Примеры задач
Пример 1
Пусть задано такое рекуррентное соотношение:
Рассчитать для
.
Заметим, чтобы узнать
, мы должны знать , чтобы узнать , мы должны узнать , , тогда , , тогдаПример 2
Задано такое соотношение:
Данное соотношение подходит под первый случай
, поэтому его асимптотика совпадает с асимптотикойНедопустимые соотношения
Рассмотрим пару ошибочно-составленных соотношений:
- не является константой; количество подзадач может меняться
- не полиномиальное различие и , т.к. , для любого
- < 1 не может быть меньше одной подзадачи
- не положительна
Приложение к известным алгоритмам
Алгоритм | Рекуррентное соотношение | Время работы | Комментарий |
---|---|---|---|
Целочисленный двоичный поиск | По мастер-теореме | , где||
Обход двоичного дерева | По мастер-теореме | , где||
Сортировка слиянием | По мастер-теореме | , где
Источники информации
- Википедия — Мастер-теорема
- Dartmouth university — the master theorem
- Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, 2-е издание. М.: Издательский дом "Вильямс", 2005. ISBN 5-8459-0857-4