Мастер-теорема — различия между версиями
Shersh (обсуждение | вклад) м (→Формулировка и доказательство мастер-теоремы) |
Shersh (обсуждение | вклад) м (→Формулировка и доказательство мастер-теоремы) |
||
Строка 21: | Строка 21: | ||
Тогда решение данной рекурренты зависит от соотношения между <tex>a, b, c</tex> так: | Тогда решение данной рекурренты зависит от соотношения между <tex>a, b, c</tex> так: | ||
− | + | # Если <tex>c > \log_b a</tex>, то <tex>T(n) = \Theta\left( n^{c} \right)</tex> | |
− | + | # Если <tex>c = \log_b a</tex>, то <tex>T(n) = \Theta\left( n^{c} \log n \right)</tex> | |
− | + | # Если <tex>c < \log_b a</tex>, то <tex>T(n) = \Theta\left( n^{\log_b a} \right)</tex> | |
|proof= Давайте рассмотрим дерево рекурсии. Всего в нем будет <tex>\log_b n</tex> уровней. На каждом таком уровне, количество подзадач будет умножаться на <tex>a</tex>, так на уровне <tex>i</tex> будет <tex>a^i</tex> подзадач. Также известно, что каждая подзадача на уровне <tex>i</tex> размера <tex>\dfrac{n}{b^i}</tex>. Подзадача размера <tex>\dfrac{n}{b^i}</tex> требует <tex>\left(\dfrac{n}{b^i}\right) ^ c</tex> дополнительных затрат, поэтому общее количество совершенных операций на уровне <tex>i</tex> : | |proof= Давайте рассмотрим дерево рекурсии. Всего в нем будет <tex>\log_b n</tex> уровней. На каждом таком уровне, количество подзадач будет умножаться на <tex>a</tex>, так на уровне <tex>i</tex> будет <tex>a^i</tex> подзадач. Также известно, что каждая подзадача на уровне <tex>i</tex> размера <tex>\dfrac{n}{b^i}</tex>. Подзадача размера <tex>\dfrac{n}{b^i}</tex> требует <tex>\left(\dfrac{n}{b^i}\right) ^ c</tex> дополнительных затрат, поэтому общее количество совершенных операций на уровне <tex>i</tex> : |
Версия 21:56, 8 мая 2015
Мастер теорема (англ. Master theorem) позволяет найти асимптотическое решение рекуррентных соотношений, которые могут возникнуть в анализе асимптотики многих алгоритмов. Однако не все рекуррентные соотношения могут быть решены через мастер теорему, ее обобщения включаются в метод Акра-Бацци[1].
Содержание
Формулировка и доказательство мастер-теоремы
Теорема (мастер-теорема): |
В анализе асимптотики алгоритма получено соотношение такого вида:
,где — число большее , — число большее , — число и — .Тогда решение данной рекурренты зависит от соотношения между так:
|
Доказательство: |
Давайте рассмотрим дерево рекурсии. Всего в нем будет уровней. На каждом таком уровне, количество подзадач будет умножаться на , так на уровне будет подзадач. Также известно, что каждая подзадача на уровне размера . Подзадача размера требует дополнительных затрат, поэтому общее количество совершенных операций на уровне : Заметим, что количество операций увеличивается, уменьшается и остается константой, если увеличивается, уменьшается или остается константой соответственно. Поэтому мы должны разобрать три случая, когда больше , равен или меньше . Рассмотрим . Распишем всю работу в течение рекурсивного спуска: Откуда получаем:1. (т.к. убывающая геометрическая прогрессия)2. 3. , но |
Пусть при решении поставленной задачи, существует алгоритм, который разбивает ее на
подзадач,при этом — размер общей задачи, — размер каждой подзадачи, — стоимость работы, проделанной рекурсивными вызовами, который включает в себя стоимость деления проблемы и стоимость слияния решения подзадач и — начальная стоимость для данной задачи(при ).Тогда мастер-теорема позволяет найти асимптотическое решение рекурренты, возникшей в результате анализа асимптотики данной задачи.Примеры
Примеры задач
Пример 1
Пусть задано такое рекуррентное соотношение:
Рассчитать для
.
Заметим, чтобы узнать
, мы должны знать , чтобы узнать , мы должны узнать , , тогда , , тогдаПример 2
Задано такое соотношение:
Данное соотношение подходит под первый случай
, поэтому его асимптотика совпадает с асимптотикой (следуя из определения и ).Недопустимые соотношения
Рассмотрим пару ошибочно-составленных соотношений:
- не является константой; количество подзадач может меняться
- не удовлетворяет условию не равно
- < 1 не может быть меньше одной подзадачи
- не положительна
Приложение к известным алгоритмам
Алгоритм | Рекуррентное соотношение | Время работы | Комментарий |
---|---|---|---|
Целочисленный двоичный поиск | По мастер-теореме | , где||
Обход бинарного дерева | По мастер-теореме | , где||
Сортировка слиянием | По мастер-теореме | , где
Источники информации
- Википедия — Мастер-теорема
- Dartmouth university — The master theorem
- Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, 2-е издание.стр. 110 М.: Издательский дом "Вильямс", 2005. ISBN 5-8459-0857-4