Мастер-теорема — различия между версиями
Shersh (обсуждение | вклад) м (→Формулировка и доказательство мастер-теоремы) |
Shersh (обсуждение | вклад) м (→Формулировка и доказательство мастер-теоремы) |
||
Строка 34: | Строка 34: | ||
Откуда получаем: | Откуда получаем: | ||
− | + | #<tex>\log_b a < c </tex> <tex>\Rightarrow</tex> <tex>T(n) = \Theta\left( n^{c} \right)</tex> (так как <tex dpi = "130"> \left(\dfrac{a}{b^c}\right)^i</tex> убывающая геометрическая прогрессия) | |
− | + | #<tex>\log_b a = c </tex> <tex>\Rightarrow</tex> <tex dpi = "130"> T(n) = \displaystyle\sum_{i=1}^{\log_b n}n^c\cdot\left(\frac{a}{b^c}\right)^i = </tex> <tex dpi = "130> n^c\cdot\displaystyle\sum_{i=1}^{\log_b n}\left(\frac{a}{b^c}\right)^i = n^c\cdot\displaystyle\sum_{i=1}^{\log_b n}1^i = n^c + n^c\log_b n = \Theta\left( n^{c} \log n \right) </tex> | |
− | + | #<tex>\log_b a > c </tex> <tex>\Rightarrow</tex> <tex dpi = "125"> T(n) = \displaystyle\sum_{i=1}^{\log_b n}n^c\cdot\left(\frac{a}{b^c}\right)^i = n^c\cdot\displaystyle\sum_{i=1}^{\log_b n}\left(\dfrac{a}{b^c}\right)^i = n^c\cdot\left(\dfrac{a}{b^c}\right)^{log_b n}</tex>, но <tex dpi = "130"> n^c\cdot\left(\dfrac{a}{b^c}\right)^{log_b n} </tex> <tex dpi = "130"> = </tex> <tex dpi = "130"> n^c\cdot\left(\dfrac{a^{log_b n} }{(b^c)^{log_b n}}\right) </tex> <tex dpi = "130"> = </tex> <tex dpi = "130"> n^c\cdot\left(\dfrac{n^{log_b a}}{n^c}\right)</tex> <tex dpi = "150"> = </tex> <tex dpi = "150"> \Theta\left( n^{\log_b a} \right) </tex> | |
− | |||
− | |||
}} | }} | ||
− | Пусть при решении поставленной задачи, существует алгоритм, который разбивает ее на <tex> a </tex> подзадач,при этом <tex>n</tex> — размер общей задачи, <tex dpi = "125">\dfrac{n}{b}</tex> — размер каждой подзадачи, <tex> n ^ {c} </tex> — стоимость работы, проделанной рекурсивными вызовами, который включает в себя стоимость деления проблемы и стоимость слияния решения подзадач и < | + | Пусть при решении поставленной задачи, существует алгоритм, который разбивает ее на <tex> a </tex> подзадач,при этом <tex>n</tex> — размер общей задачи, <tex dpi = "125">\dfrac{n}{b}</tex> — размер каждой подзадачи, <tex> n ^ {c} </tex> — стоимость работы, проделанной рекурсивными вызовами, который включает в себя стоимость деления проблемы и стоимость слияния решения подзадач и <tex>d</tex> — начальная стоимость для данной задачи(при <tex>n = 1</tex>).Тогда мастер-теорема позволяет найти асимптотическое решение рекурренты, возникшей в результате анализа асимптотики данной задачи. |
==Примеры== | ==Примеры== |
Версия 21:57, 8 мая 2015
Мастер теорема (англ. Master theorem) позволяет найти асимптотическое решение рекуррентных соотношений, которые могут возникнуть в анализе асимптотики многих алгоритмов. Однако не все рекуррентные соотношения могут быть решены через мастер теорему, ее обобщения включаются в метод Акра-Бацци[1].
Содержание
Формулировка и доказательство мастер-теоремы
Теорема (мастер-теорема): |
В анализе асимптотики алгоритма получено соотношение такого вида:
,где — число большее , — число большее , — число и — .Тогда решение данной рекурренты зависит от соотношения между так:
|
Доказательство: |
Давайте рассмотрим дерево рекурсии. Всего в нем будет уровней. На каждом таком уровне, количество подзадач будет умножаться на , так на уровне будет подзадач. Также известно, что каждая подзадача на уровне размера . Подзадача размера требует дополнительных затрат, поэтому общее количество совершенных операций на уровне : Заметим, что количество операций увеличивается, уменьшается и остается константой, если увеличивается, уменьшается или остается константой соответственно. Поэтому мы должны разобрать три случая, когда больше , равен или меньше . Рассмотрим . Распишем всю работу в течение рекурсивного спуска: Откуда получаем:
|
Пусть при решении поставленной задачи, существует алгоритм, который разбивает ее на
подзадач,при этом — размер общей задачи, — размер каждой подзадачи, — стоимость работы, проделанной рекурсивными вызовами, который включает в себя стоимость деления проблемы и стоимость слияния решения подзадач и — начальная стоимость для данной задачи(при ).Тогда мастер-теорема позволяет найти асимптотическое решение рекурренты, возникшей в результате анализа асимптотики данной задачи.Примеры
Примеры задач
Пример 1
Пусть задано такое рекуррентное соотношение:
Рассчитать для
.
Заметим, чтобы узнать
, мы должны знать , чтобы узнать , мы должны узнать , , тогда , , тогдаПример 2
Задано такое соотношение:
Данное соотношение подходит под первый случай
, поэтому его асимптотика совпадает с асимптотикой (следуя из определения и ).Недопустимые соотношения
Рассмотрим пару ошибочно-составленных соотношений:
- не является константой; количество подзадач может меняться
- не удовлетворяет условию не равно
- < 1 не может быть меньше одной подзадачи
- не положительна
Приложение к известным алгоритмам
Алгоритм | Рекуррентное соотношение | Время работы | Комментарий |
---|---|---|---|
Целочисленный двоичный поиск | По мастер-теореме | , где||
Обход бинарного дерева | По мастер-теореме | , где||
Сортировка слиянием | По мастер-теореме | , где
Источники информации
- Википедия — Мастер-теорема
- Dartmouth university — The master theorem
- Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, 2-е издание.стр. 110 М.: Издательский дом "Вильямс", 2005. ISBN 5-8459-0857-4