Участник:Flanir1 — различия между версиями
Flanir1 (обсуждение | вклад) (→Вставка элемента) |
Flanir1 (обсуждение | вклад) (→Удаление элемента) |
||
Строка 123: | Строка 123: | ||
=== Удаление элемента === | === Удаление элемента === | ||
+ | <tex>x</tex> {{---}} значение удаляемого узла. | ||
+ | <tex>t</tex> {{---}} текущий узел. | ||
+ | Пусть изначально <tex>t = \mathtt{search(x)}</tex>{{---}} узел, где находится x. Если у <tex>t</tex> не существует родителя, то это корень. Удалим его. | ||
+ | Если у <tex>t</tex> существует родитель, и у него 3 сына, то просто удалим t. | ||
+ | |||
+ | Если у родителя(<tex>\mathtt{t.parent}</tex>) 2 сына, то удалим <tex>t</tex>, а его брата(<tex>b</tex> перецепим к родителю соседнего листа(обозначим его за <tex>p</tex>). Вызовем <tex>updateKey(b)</tex> и <tex>splitParent(p)</tex>, так как у <tex>p</tex> могло оказаться 4 сына. Удалим теперь и <tex>\mathtt{t.parent}</tex>. После возврата из рекурсии обновим все ключи с помощью <tex>\mathtt{updateKeys()}</tex>. Будем запускаться от <tex>b</tex> | ||
=== Слияние двух деревьев === | === Слияние двух деревьев === |
Версия 16:24, 10 мая 2015
2-3 дерево — структура данных, представляющая собой сбалансированное дерево поиска, такое что из каждого узла может выходить две или три ветви и глубина всех листьев одинакова. Является частным случаем B+-дерева, когда нелистовые вершины могут иметь только 2 или 3 сыновей.
Содержание
Свойства
2-3 дерево — сбалансированное дерево поиска, обладающее следующими свойствами:
- нелистовые вершины имеют либо 2, либо 3 сына,
- нелистовая вершина, имеющая двух сыновей, хранит максимум левого поддерева. Нелистовая вершина, имеющая трех сыновей, хранит два значения.Первое значение хранит максимум левого поддерева, второе максимум центрального поддерева,
- сыновья упорядочены по значению максимума поддерева сына,
- все листья лежат на одной глубине,
- Высота 2-3 дерева , где - количество элементов в дереве.
Теорема: |
Высота 2-3 дерева , где - количество элементов в дереве. |
Доказательство: |
Из построения следует, что все листья лежат на одной глубине, так как элементов | , то получаем что высота равна
Операции
Введем следующие обозначения:
- - корень 2-3 дерева
Каждый узел дерева обладает полями:
- - сыновья узла,
- - ключи узла,
- - количество сыновей.
Поиск
- - искомое значение.
- - текущая вершина в дереве. Изначально
Будем просматривать ключи в узлах, пока узел не является листом.Рассмотрим два случая: 1)у текущей вершины два сына. Если её значение меньше
, то , иначе .2)у текущей вершины три сына. Если второе значение меньше
, то . Если первое значение меньше , то , иначе .Node search(int x): Node t = root while (t не является листом) if (t.length == 2) if (t.keys[0] < x) t = t.sons[1] else t = t.sons[0] else if (t.keys[1] < x) t = t.sons[2] else if (t.keys[0] < x) t = t.sons[1] else t = t.sons[0] return t
Пример поиска в 2-3 дереве, так как элемент 6 существует, то был возвращен корректный узел, так как элемента 10 нет, возвращается некорректный узел. На основе этого можно сделать метод
, проверяющий наличии элемента в деревеВставка элемента
- - добавляемое значение.
- - текущая вершина в дереве. Изначально
Если корня не существует — дерево пустое, то новый элемент и будет корнем (одновременно и листом). Иначе поступим следующим образом:
Найдем сперва, где бы находился элемент, применив search(x). Далее проверим есть ли у этого узла родитель, если его нет, то в дереве всего один элемент - лист. Возьмем этот лист и новый узел, и создадим для них родителя, лист и новый узел расположим в порядке возрастания.
Если родитель существует, то подвесим к нему ещё одного сына. Если сыновей стало 4, то разделим родителя на два узла, и повторим разделение теперь для его родителя(перед разделением обновим ключи).
splitParent(Node t): if (t.length > 3) Node a; a.sons[0] = t.sons[2] a.sons[1] = t.sons[3] t.sons[2].parent = a t.sons[3].parent = a a.keys[0] = t.keys[2] a.length = 2 t.length = 2 t.sons[2] = null t.sons[3] = null if (t.parent != null) t.parent[t.length] = a t.length++ сортируем сыновей у t.parent splitParent(t.parent) else //мы расщепили корень, надо подвесить его к общему родителю, который будет новым корнем Node t = root root.sons[0] = t root.sons[1] = a t.parent = root a.parent = root root.length = 2 сортируем сыновей у root
Если сыновей стало 3, то ничего не делаем. Далее необходимо восстановить ключи на пути от новой вершины до корня:
updateKeys(Node t): Node a = t.parent while (a != null) for i = 0 .. a.length - 1 a.keys[i] = max(a.sons[i]) //max - возвращает максимальное значение в поддереве. a = a.parent //Примечание: max легко находить, если хранить максимум //правого поддерева в каждом узле — это значение и будет max(a.sons[i])
необходимо запускать от нового узла. Добавление элемента:
insert(int x): Node n = Node(x) if (root == null) root = n return Node a = search(x) if (a.parent == null) Node t = root root.sons[0] = t root.sons[1] = n t.parent = root n.parent = root root.length = 2 сортируем сыновей у root else Node p = a.parent p.sons[p.length] = n p.length++ n.parent = p сортируем сыновей у p updateKeys(n) split(n) updateKeys(n)
Так как мы спускаемся один раз, и поднимаемся вверх при расщеплении родителей не более одного раза, то
работает за Примеры добавления:Удаление элемента
— значение удаляемого узла. — текущий узел. Пусть изначально — узел, где находится x. Если у не существует родителя, то это корень. Удалим его. Если у существует родитель, и у него 3 сына, то просто удалим t.
Если у родителя(
) 2 сына, то удалим , а его брата( перецепим к родителю соседнего листа(обозначим его за ). Вызовем и , так как у могло оказаться 4 сына. Удалим теперь и . После возврата из рекурсии обновим все ключи с помощью . Будем запускаться отСлияние двух деревьев
Cсылки
- is.ifmo.ru - Визуализатор 2-3 дерева — 1
- rain.ifmo.ru - Визуализатор 2-3 дерева — 2
- Википедия — 2-3 дерево
- Д. Кнут «Искусство программирования. Сортировка и поиск», часть 6.2.4