Участник:Flanir1 — различия между версиями
Flanir1 (обсуждение | вклад) (→Слияние двух деревьев) |
Flanir1 (обсуждение | вклад) (→Следующий и предыдущий) |
||
Строка 135: | Строка 135: | ||
=== Следующий и предыдущий === | === Следующий и предыдущий === | ||
− | <tex>x</tex> {{---}} поисковый параметр | + | *<tex>x</tex> {{---}} поисковый параметр, |
− | <tex>t</tex> {{---}} текущий узел | + | *<tex>t</tex> {{---}} текущий узел. |
В силу того, что наши узлы отсортированы по максимуму в поддереве, то следующий объект это соседний лист справа. Попасть туда можно следующим образом: | В силу того, что наши узлы отсортированы по максимуму в поддереве, то следующий объект это соседний лист справа. Попасть туда можно следующим образом: | ||
Будем подниматься вверх, пока у нас не появится первой возможности свернуть направо вниз. Как только мы свернули направо вниз, будем идти всегда налево. Таким образом мы окажемся в соседнем листе. Если мы не смогли ни разу свернуть направо вниз, и пришли в корень, то следующего объекта не существует. Симметрично разбирается и случай с предыдущим. | Будем подниматься вверх, пока у нас не появится первой возможности свернуть направо вниз. Как только мы свернули направо вниз, будем идти всегда налево. Таким образом мы окажемся в соседнем листе. Если мы не смогли ни разу свернуть направо вниз, и пришли в корень, то следующего объекта не существует. Симметрично разбирается и случай с предыдущим. |
Версия 16:51, 10 мая 2015
2-3 дерево — структура данных, представляющая собой сбалансированное дерево поиска, такое что из каждого узла может выходить две или три ветви и глубина всех листьев одинакова. Является частным случаем B+-дерева, когда нелистовые вершины могут иметь только 2 или 3 сыновей.
Содержание
Свойства
2-3 дерево — сбалансированное дерево поиска, обладающее следующими свойствами:
- нелистовые вершины имеют либо 2, либо 3 сына,
- нелистовая вершина, имеющая двух сыновей, хранит максимум левого поддерева. Нелистовая вершина, имеющая трех сыновей, хранит два значения.Первое значение хранит максимум левого поддерева, второе максимум центрального поддерева,
- сыновья упорядочены по значению максимума поддерева сына,
- все листья лежат на одной глубине,
- Высота 2-3 дерева , где - количество элементов в дереве.
Теорема: |
Высота 2-3 дерева , где - количество элементов в дереве. |
Доказательство: |
Из построения следует, что все листья лежат на одной глубине, так как элементов | , то получаем что высота равна
Операции
Введем следующие обозначения:
- - корень 2-3 дерева
Каждый узел дерева обладает полями:
- - сыновья узла,
- - ключи узла,
- - количество сыновей.
Поиск
- - искомое значение.
- - текущая вершина в дереве. Изначально
Будем просматривать ключи в узлах, пока узел не является листом.Рассмотрим два случая: 1)у текущей вершины два сына. Если её значение меньше
, то , иначе .2)у текущей вершины три сына. Если второе значение меньше
, то . Если первое значение меньше , то , иначе .Node search(int x): Node t = root while (t не является листом) if (t.length == 2) if (t.keys[0] < x) t = t.sons[1] else t = t.sons[0] else if (t.keys[1] < x) t = t.sons[2] else if (t.keys[0] < x) t = t.sons[1] else t = t.sons[0] return t
Пример поиска в 2-3 дереве, так как элемент 6 существует, то был возвращен корректный узел, так как элемента 10 нет, возвращается некорректный узел. На основе этого можно сделать метод
, проверяющий наличии элемента в деревеВставка элемента
- - добавляемое значение.
- - текущая вершина в дереве. Изначально
Если корня не существует — дерево пустое, то новый элемент и будет корнем (одновременно и листом). Иначе поступим следующим образом:
Найдем сперва, где бы находился элемент, применив search(x). Далее проверим есть ли у этого узла родитель, если его нет, то в дереве всего один элемент - лист. Возьмем этот лист и новый узел, и создадим для них родителя, лист и новый узел расположим в порядке возрастания.
Если родитель существует, то подвесим к нему ещё одного сына. Если сыновей стало 4, то разделим родителя на два узла, и повторим разделение теперь для его родителя(перед разделением обновим ключи).
splitParent(Node t): if (t.length > 3) Node a; a.sons[0] = t.sons[2] a.sons[1] = t.sons[3] t.sons[2].parent = a t.sons[3].parent = a a.keys[0] = t.keys[2] a.length = 2 t.length = 2 t.sons[2] = null t.sons[3] = null if (t.parent != null) t.parent[t.length] = a t.length++ сортируем сыновей у t.parent splitParent(t.parent) else //мы расщепили корень, надо подвесить его к общему родителю, который будет новым корнем Node t = root root.sons[0] = t root.sons[1] = a t.parent = root a.parent = root root.length = 2 сортируем сыновей у root
Если сыновей стало 3, то ничего не делаем. Далее необходимо восстановить ключи на пути от новой вершины до корня:
updateKeys(Node t): Node a = t.parent while (a != null) for i = 0 .. a.length - 1 a.keys[i] = max(a.sons[i]) //max - возвращает максимальное значение в поддереве. a = a.parent //Примечание: max легко находить, если хранить максимум //правого поддерева в каждом узле — это значение и будет max(a.sons[i])
необходимо запускать от нового узла. Добавление элемента:
insert(int x): Node n = Node(x) if (root == null) root = n return Node a = search(x) if (a.parent == null) Node t = root root.sons[0] = t root.sons[1] = n t.parent = root n.parent = root root.length = 2 сортируем сыновей у root else Node p = a.parent p.sons[p.length] = n p.length++ n.parent = p сортируем сыновей у p updateKeys(n) split(n) updateKeys(n)
Так как мы спускаемся один раз, и поднимаемся вверх при расщеплении родителей не более одного раза, то
работает за Примеры добавления:Удаление элемента
- — значение удаляемого узла,
- — текущий узел.
Пусть изначально
— узел, где находится x.Если у
не существует родителя, то это корень. Удалим его.Если у
существует родитель, и у него 3 сына, то просто удалим t. Обновим ключи, запустив от любого брата . ) 2 сына, то удалим , а его брата( перецепим к родителю соседнего листа(обозначим его за ). Вызовем и , так как у могло оказаться 4 сына. Удалим теперь и . После возврата из рекурсии обновим все ключи с помощью , запустившись от .Следующий и предыдущий
- — поисковый параметр,
- — текущий узел.
В силу того, что наши узлы отсортированы по максимуму в поддереве, то следующий объект это соседний лист справа. Попасть туда можно следующим образом: Будем подниматься вверх, пока у нас не появится первой возможности свернуть направо вниз. Как только мы свернули направо вниз, будем идти всегда налево. Таким образом мы окажемся в соседнем листе. Если мы не смогли ни разу свернуть направо вниз, и пришли в корень, то следующего объекта не существует. Симметрично разбирается и случай с предыдущим.
Node next(int x) Node t = search(x) if (t.keys[0] > x) //x не было в дереве, и мы нашли следующий сразу return t while (t != null) t = t.parent if (можно свернуть направо вниз) в t помещаем вершину, в которую свернули while (пока t — не лист) t = t.sons[0] return t return t;
Cсылки
- is.ifmo.ru - Визуализатор 2-3 дерева — 1
- rain.ifmo.ru - Визуализатор 2-3 дерева — 2
- Википедия — 2-3 дерево
- Д. Кнут «Искусство программирования. Сортировка и поиск», часть 6.2.4