Мастер-теорема — различия между версиями
Shersh (обсуждение | вклад) м (→Приложение к известным алгоритмам) |
Timur (обсуждение | вклад) |
||
Строка 24: | Строка 24: | ||
# Если <tex>c < \log_b a</tex>, то <tex>T(n) = O\left( n^{\log_b a} \right)</tex> | # Если <tex>c < \log_b a</tex>, то <tex>T(n) = O\left( n^{\log_b a} \right)</tex> | ||
− | |proof= | + | |proof= Рассмотрим дерево рекурсии. Всего в нем будет <tex>\log_b n</tex> уровней. На каждом таком уровне, количество детей в дереве будет умножаться на <tex>a</tex>, так на уровне <tex>i</tex> будет <tex>a^i</tex> детей. Также известно, что каждый ребенок на уровне <tex>i</tex> размера <tex>\dfrac{n}{b^i}</tex>. Ребенок размера <tex>\left(\dfrac{n}{b^i}\right)</tex> требует <tex>\left(\dfrac{n}{b^i}\right) ^ c</tex> дополнительных затрат, поэтому общее количество совершенных действий на уровне <tex>i</tex> : |
<tex> a^i\left(\dfrac{n}{b^i}\right)^c = n^c\left(\dfrac{a^i}{b^{ic}}\right) = n^c\left(\dfrac{a}{b^c}\right)^i</tex> | <tex> a^i\left(\dfrac{n}{b^i}\right)^c = n^c\left(\dfrac{a^i}{b^{ic}}\right) = n^c\left(\dfrac{a}{b^c}\right)^i</tex> | ||
Заметим, что количество операций увеличивается, уменьшается и остается константой, если <tex>\left(\dfrac{a}{b^c}\right)^i</tex> увеличивается, уменьшается или остается константой соответственно. | Заметим, что количество операций увеличивается, уменьшается и остается константой, если <tex>\left(\dfrac{a}{b^c}\right)^i</tex> увеличивается, уменьшается или остается константой соответственно. | ||
− | Поэтому | + | Поэтому решение разбивается на три случая, когда <tex>\left(\dfrac{a}{b^c}\right)^i</tex> больше <tex>1</tex>, равна <math>1</math> или меньше <math>1</math>. Рассмотрим <tex dpi = "130">\left(\dfrac{a}{b^c}\right)^i = 1\Leftrightarrow a = b^c \Leftrightarrow\ \log_b a = c \log_b b \Leftrightarrow\ \log_b a = c</tex>. |
Распишем всю работу в течение рекурсивного спуска: | Распишем всю работу в течение рекурсивного спуска: | ||
− | <tex dpi = "130"> \displaystyle\sum_{i=0}^{\log_b n}n^c\left(\frac{a}{b^c}\right)^i = n^c\cdot\displaystyle\sum_{i=0}^{\log_b n}\left(\frac{a}{b^c}\right)^i</tex> | + | <tex dpi = "130"> \displaystyle\sum_{i=0}^{\log_b n}n^c\left(\frac{a}{b^c} + O(1)\right)^i= О\left(n^c\cdot\displaystyle\sum_{i=0}^{\log_b n}\left(\frac{a}{b^c} + O(1)\right)\right)^i</tex> |
Откуда получаем: | Откуда получаем: | ||
− | #<tex>\log_b a | + | #<tex>c > \log_b a </tex> <tex>\Rightarrow</tex> <tex>T(n) = O\left( n^{c} \right)</tex> (так как <tex dpi = "130"> \left(\dfrac{a}{b^c}\right)^i</tex> убывающая геометрическая прогрессия) |
− | #<tex>\log_b a | + | #<tex>c = \log_b a </tex> <tex>\Rightarrow</tex> <tex dpi = "130"> T(n) = \displaystyle\sum_{i=0}^{\log_b n}n^c\cdot\left(\frac{a}{b^c}\right)^i = </tex> <tex dpi = "130> n^c\cdot\displaystyle\sum_{i=0}^{\log_b n}\left(\frac{a}{b^c}\right)^i = n^c\cdot\displaystyle\sum_{i=0}^{\log_b n}1^i = n^c + n^c\log_b n = O\left( n^{c} \log n \right) </tex> |
− | #<tex>\log_b a | + | #<tex>c < \log_b a </tex> <tex>\Rightarrow</tex> <tex dpi = "125"> T(n) = \displaystyle\sum_{i=0}^{\log_b n}n^c\cdot\left(\frac{a}{b^c}\right)^i = n^c\cdot\displaystyle\sum_{i=0}^{\log_b n}\left(\dfrac{a}{b^c}\right)^i = O\left(n^c\cdot\left(\dfrac{a}{b^c}\right)^{\log_b n}\right)</tex>, но <tex dpi = "130"> n^c\cdot\left(\dfrac{a}{b^c}\right)^{\log_b n} </tex> <tex dpi = "130"> = </tex> <tex dpi = "130"> n^c\cdot\left(\dfrac{a^{\log_b n} }{(b^c)^{\log_b n}}\right) </tex> <tex dpi = "130"> = </tex> <tex dpi = "130"> n^c\cdot\left(\dfrac{n^{\log_b a}}{n^c}\right)</tex> <tex dpi = "130"> = </tex> <tex dpi = "130"> n^{\log_b a} \Rightarrow T(n) = O\left(n^{\log_b a}\right)</tex> |
}} | }} | ||
− | + | Мастер-теорема имеет прямое отношение к анализу алгоритмов, так как рекуррентное соотношение можно воспринимать как алгоритм, который разбивает задачу на <tex> a </tex> подзадач,при этом <tex>n</tex> — размер общей задачи, <tex dpi = "125">\dfrac{n}{b}</tex> — размер каждой подзадачи, <tex> n ^ {c} </tex> — стоимость работы, проделанной рекурсивными вызовами, который включает в себя стоимость деления проблемы и стоимость слияния решения подзадач и <tex>O(1)</tex> — начальная стоимость для данной задачи(при <tex>n = 1</tex>).Тогда мастер-теорема позволяет найти асимптотическое решение рекурренты, возникшей в результате анализа асимптотики данной задачи. Также, следуя из определения, <tex> O </tex> мастер-теорема распространяется на <tex> \Theta </tex> и <tex> \Omega </tex>. | |
==Примеры== | ==Примеры== | ||
Строка 50: | Строка 50: | ||
<tex> t(x) = \begin{cases} | <tex> t(x) = \begin{cases} | ||
− | 2 \; t\!\left(\dfrac{x}{2}\right) + n\log n , & n > 1\\ | + | 2 \; t\!\left(\dfrac{x}{2}\right) + O(n\log n) , & n > 1\\ |
1 , & n = 1 | 1 , & n = 1 | ||
\end{cases} | \end{cases} | ||
Строка 63: | Строка 63: | ||
<tex> T(n) = \begin{cases} | <tex> T(n) = \begin{cases} | ||
− | 2 \; T\!\left(\dfrac{n}{3}\right) + f(n) , & n > 1\\ | + | 2 \; T\!\left(\dfrac{n}{3}\right) + O(f(n)) , & n > 1\\ |
d , & n = 1 | d , & n = 1 | ||
\end{cases} | \end{cases} | ||
Строка 70: | Строка 70: | ||
<tex>f(n) = n\sqrt {n + 1} < n\sqrt{n + n} < n\sqrt{2n} = O(n^{3/2}) </tex> | <tex>f(n) = n\sqrt {n + 1} < n\sqrt{n + n} < n\sqrt{2n} = O(n^{3/2}) </tex> | ||
− | Данное соотношение подходит под первый случай <tex>\left(a = 2, b = 3, c = \dfrac{3}{2}\right)</tex>, поэтому его асимптотика совпадает с асимптотикой <tex>f(n)</tex>. | + | Данное соотношение подходит под первый случай <tex>\left(a = 2, b = 3, c = \dfrac{3}{2}\right)</tex>, поэтому его асимптотика совпадает с асимптотикой <tex>O(f(n))</tex>. |
=== Недопустимые соотношения === | === Недопустимые соотношения === | ||
Рассмотрим пару соотношений, которые нельзя решить мастер-теоремой: | Рассмотрим пару соотношений, которые нельзя решить мастер-теоремой: | ||
− | *<tex dpi = "130">T(n) = 2^nT\left (\dfrac{n}{2}\right )+n^n</tex> | + | *<tex dpi = "130">T(n) = 2^nT\left (\dfrac{n}{2}\right )+O(n^n)</tex> |
*:<tex>a</tex> не является константой; количество подзадач может меняться | *:<tex>a</tex> не является константой; количество подзадач может меняться | ||
− | *<tex dpi = "130">T(n) = 2T\left (\dfrac{n}{2}\right )+\frac{n}{\log n}</tex> | + | *<tex dpi = "130">T(n) = 2T\left (\dfrac{n}{2}\right )+O\left(\frac{n}{\log n}\right)</tex> |
− | *:рассмотрим <tex> f(n) = \dfrac{n}{\log n} </tex> , тогда <tex> f(n) | + | *:рассмотрим <tex> f(n) = \dfrac{n}{\log n} </tex> , тогда не существует такого <tex> O(n^c) </tex>, что <tex> f(n) \in O(n^c) </tex> , т.к. при <tex> n = 1 , f(n) \rightarrow \!\, \infty </tex>, а <tex> O(n^c) </tex> ограничено. |
− | *<tex dpi = "130">T(n) = 0.5T\left (\dfrac{n}{2}\right )+n</tex> | + | *<tex dpi = "130">T(n) = 0.5T\left (\dfrac{n}{2}\right )+O(n)</tex> |
*:<tex>a < 1</tex> не может быть меньше одной подзадачи | *:<tex>a < 1</tex> не может быть меньше одной подзадачи | ||
− | *<tex dpi = "130">T(n) = 64T\left (\dfrac{n}{8}\right )-n^2\log n</tex> | + | *<tex dpi = "130">T(n) = 64T\left (\dfrac{n}{8}\right )-O(n^2\log n)</tex> |
*:<tex>f(n)</tex> не положительна | *:<tex>f(n)</tex> не положительна | ||
=== Приложение к известным алгоритмам === | === Приложение к известным алгоритмам === |
Версия 20:45, 12 мая 2015
Мастер теорема (англ. Master theorem) позволяет найти асимптотическое решение рекуррентных соотношений, которые могут возникнуть в анализе асимптотики многих алгоритмов. Однако не все рекуррентные соотношения могут быть решены через мастер теорему, ее обобщения включаются в метод Акра-Бацци[1].
Содержание
Формулировка и доказательство мастер-теоремы
Теорема (мастер-теорема): |
Пусть имеется рекуррентное соотношения:
где , , , .Тогда асимптотическое решение имеет вид:
|
Доказательство: |
Рассмотрим дерево рекурсии. Всего в нем будет уровней. На каждом таком уровне, количество детей в дереве будет умножаться на , так на уровне будет детей. Также известно, что каждый ребенок на уровне размера . Ребенок размера требует дополнительных затрат, поэтому общее количество совершенных действий на уровне : Заметим, что количество операций увеличивается, уменьшается и остается константой, если увеличивается, уменьшается или остается константой соответственно.Поэтому решение разбивается на три случая, когда больше , равна или меньше . Рассмотрим .Распишем всю работу в течение рекурсивного спуска: Откуда получаем:
|
Мастер-теорема имеет прямое отношение к анализу алгоритмов, так как рекуррентное соотношение можно воспринимать как алгоритм, который разбивает задачу на
подзадач,при этом — размер общей задачи, — размер каждой подзадачи, — стоимость работы, проделанной рекурсивными вызовами, который включает в себя стоимость деления проблемы и стоимость слияния решения подзадач и — начальная стоимость для данной задачи(при ).Тогда мастер-теорема позволяет найти асимптотическое решение рекурренты, возникшей в результате анализа асимптотики данной задачи. Также, следуя из определения, мастер-теорема распространяется на и .Примеры
Примеры задач
Пример 1
Пусть задано такое рекуррентное соотношение:
Заметим, что
, для любого , что удовлетворяет 1 условию. Тогда , гдеПример 2
Задано такое соотношение:
Данное соотношение подходит под первый случай
, поэтому его асимптотика совпадает с асимптотикой .Недопустимые соотношения
Рассмотрим пару соотношений, которые нельзя решить мастер-теоремой:
- не является константой; количество подзадач может меняться
- рассмотрим , тогда не существует такого , что , т.к. при , а ограничено.
- не может быть меньше одной подзадачи
- не положительна
Приложение к известным алгоритмам
Алгоритм | Рекуррентное соотношение | Время работы | Комментарий |
---|---|---|---|
Целочисленный двоичный поиск | По мастер-теореме | , где||
Обход бинарного дерева | По мастер-теореме | , где||
Сортировка слиянием | По мастер-теореме | , где
См.также
Примечания
Источники информации
- Википедия — Мастер-теорема
- Dartmouth university — The master theorem
- Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, 2-е издание.стр. 110 М.: Издательский дом "Вильямс", 2005. ISBN 5-8459-0857-4