Перехеширование — различия между версиями
Rybak (обсуждение | вклад) |
Kozichuk (обсуждение | вклад) |
||
Строка 5: | Строка 5: | ||
===При хешировании цепочками=== | ===При хешировании цепочками=== | ||
− | При использовании [[Открытое и закрытое хеширование#Открытое хеширование|хеширования цепочками]] , элементы с одинаковым результатом хеш-функции помещают в список. Так как операции <tex> | + | При использовании [[Открытое и закрытое хеширование#Открытое хеширование|хеширования цепочками]] , элементы с одинаковым результатом хеш-функции помещают в список. Так как операции <tex>\mathrm{add(x)}</tex>, <tex>\mathrm{contains}</tex> и <tex>\mathrm{remove(x)}</tex> работают за <tex>O(l)</tex>, где <tex>l</tex> {{---}} длина списка, то с некоторого момента выгодно увеличить размер хеш-таблицы, чтобы поддерживать амортизационную стоимость операции <tex>O(1)</tex>. |
Рассмотрим следующий алгоритм перехеширования: когда в хеш-таблицу добавлено <tex dpi = "150">\frac{4n}{3}</tex> элементов, где <tex>n</tex> {{---}} размер хеш-таблицы, создадим новую хеш-таблицу размера <tex>2n</tex>, и последовательно переместим в нее все элементы первой таблицы. При этом, сменим хеш-функцию так, чтобы она выдавала значения <tex>[0..2n-1]</tex> (в функциях, использующих остаток от деления на длину таблицы, достаточно брать остаток от деления на <tex>2n</tex> вместо остатка от деления на <tex>n</tex>). | Рассмотрим следующий алгоритм перехеширования: когда в хеш-таблицу добавлено <tex dpi = "150">\frac{4n}{3}</tex> элементов, где <tex>n</tex> {{---}} размер хеш-таблицы, создадим новую хеш-таблицу размера <tex>2n</tex>, и последовательно переместим в нее все элементы первой таблицы. При этом, сменим хеш-функцию так, чтобы она выдавала значения <tex>[0..2n-1]</tex> (в функциях, использующих остаток от деления на длину таблицы, достаточно брать остаток от деления на <tex>2n</tex> вместо остатка от деления на <tex>n</tex>). | ||
Найдем амортизационную стоимость добавления, после которого было сделано перехеширование, используя метод предоплаты. С момента последнего перехеширования было произведено не менее <tex dpi = "150">\frac{2n}{3}</tex> операций <tex>Add(x)</tex>, так как изначально в массиве находится <tex dpi = "150">\frac{2n}{3}</tex> элементов (или <tex>0</tex> в начале работы), а перехеширование происходит при наличии <tex dpi = "150">\frac{4n}{3}</tex> элементов. | Найдем амортизационную стоимость добавления, после которого было сделано перехеширование, используя метод предоплаты. С момента последнего перехеширования было произведено не менее <tex dpi = "150">\frac{2n}{3}</tex> операций <tex>Add(x)</tex>, так как изначально в массиве находится <tex dpi = "150">\frac{2n}{3}</tex> элементов (или <tex>0</tex> в начале работы), а перехеширование происходит при наличии <tex dpi = "150">\frac{4n}{3}</tex> элементов. | ||
− | Для проведения перехеширования необходимо произвести <tex dpi = "150">\frac{4n}{3}</tex> операций <tex> | + | Для проведения перехеширования необходимо произвести <tex dpi = "150">\frac{4n}{3}</tex> операций <tex>\mathrm{add}(x)</tex>, средняя стоимость которых составляет <tex>O(1)</tex> , потратить <tex dpi = "150">\frac{4n}{3}</tex> операций на проход хеш-таблицы, и <tex dpi = "150">\frac{4n}{3}</tex> операций на удаление предыдущей таблицы. В итоге, если мы увеличим стоимость каждой операции <tex>\mathrm{add}(x)</tex> на <tex>6</tex>, то есть на <tex>O(1)</tex>, операция перехеширования будет полностью предоплачена. Значит, амортизационная стоимость перехеширования при открытом типе хеш-таблицы равна <tex>O(1)</tex>. |
===При хеширования с открытой адресацией=== | ===При хеширования с открытой адресацией=== | ||
− | При использовании [[Открытое и закрытое хеширование#Закрытое хеширование|хеширования с открытой адресацией]] , операции <tex> | + | При использовании [[Открытое и закрытое хеширование#Закрытое хеширование|хеширования с открытой адресацией]] , операции <tex>\mathrm{add}(x)</tex>, <tex>\mathrm{contains}(x)</tex> и <tex>\mathrm{remove(x)}</tex> в худшем случае работают за <tex>O(k)</tex>, где <tex>k</tex> {{---}} количество уже добавленных в таблицу элементов, поэтому перехеширование надо проводить при неполном заполнении хеш-таблицы. |
− | Будем проводить перехеширование при заполнении таблицы на <tex dpi = "150">\frac{n}{2}</tex>, увеличивая размер таблицы в <tex>2</tex> раза. Аналогично случаю с открытым хешированием, для перехеширования необходимо будет потратить <tex>O(n)</tex> операций на обход таблицы, <tex>O(n)\cdot A</tex> элементарных операций на добавление элементов, где <tex>A</tex> {{---}} стоимость операции <tex> | + | Будем проводить перехеширование при заполнении таблицы на <tex dpi = "150">\frac{n}{2}</tex>, увеличивая размер таблицы в <tex>2</tex> раза. Аналогично случаю с открытым хешированием, для перехеширования необходимо будет потратить <tex>O(n)</tex> операций на обход таблицы, <tex>O(n)\cdot A</tex> элементарных операций на добавление элементов, где <tex>A</tex> {{---}} стоимость операции <tex>\mathrm{add(x)}</tex>, и <tex>O(n)</tex> операций на удаление таблицы. Так как <tex>A \geq 1</tex>, и между последовательными перехешированиями производится <tex>O(n)</tex> добавлений, то можно предоплатить перехеширование, увеличив стоимость операции <tex>\mathrm{add(x)}</tex> на <tex>O(1)</tex>, и не изменив стоимость остальных операций. |
==См. также== | ==См. также== |
Версия 11:46, 14 мая 2015
При добавлении в хеш-таблицу большого количества элементов могут возникнуть ухудшения в ее работе. Обработка любого вызова будет занимать больше времени из-за увеличения размеров цепочек при хешировании на списках или кластеризации при хешировании с открытой адресацией, также, при хешировании с открытой адресацией может произойти переполнение таблицы. Для избежания таких ситуаций используется выбор новой хеш-функции и (или) хеш-таблица большего размера. Этот процесс называется перехеширование.
Содержание
Перехеширование при разных типах хеширования
При хешировании цепочками
При использовании хеширования цепочками , элементы с одинаковым результатом хеш-функции помещают в список. Так как операции , и работают за , где — длина списка, то с некоторого момента выгодно увеличить размер хеш-таблицы, чтобы поддерживать амортизационную стоимость операции . Рассмотрим следующий алгоритм перехеширования: когда в хеш-таблицу добавлено элементов, где — размер хеш-таблицы, создадим новую хеш-таблицу размера , и последовательно переместим в нее все элементы первой таблицы. При этом, сменим хеш-функцию так, чтобы она выдавала значения (в функциях, использующих остаток от деления на длину таблицы, достаточно брать остаток от деления на вместо остатка от деления на ).
Найдем амортизационную стоимость добавления, после которого было сделано перехеширование, используя метод предоплаты. С момента последнего перехеширования было произведено не менее
операций , так как изначально в массиве находится элементов (или в начале работы), а перехеширование происходит при наличии элементов.Для проведения перехеширования необходимо произвести
операций , средняя стоимость которых составляет , потратить операций на проход хеш-таблицы, и операций на удаление предыдущей таблицы. В итоге, если мы увеличим стоимость каждой операции на , то есть на , операция перехеширования будет полностью предоплачена. Значит, амортизационная стоимость перехеширования при открытом типе хеш-таблицы равна .При хеширования с открытой адресацией
При использовании хеширования с открытой адресацией , операции , и в худшем случае работают за , где — количество уже добавленных в таблицу элементов, поэтому перехеширование надо проводить при неполном заполнении хеш-таблицы.
Будем проводить перехеширование при заполнении таблицы на
, увеличивая размер таблицы в раза. Аналогично случаю с открытым хешированием, для перехеширования необходимо будет потратить операций на обход таблицы, элементарных операций на добавление элементов, где — стоимость операции , и операций на удаление таблицы. Так как , и между последовательными перехешированиями производится добавлений, то можно предоплатить перехеширование, увеличив стоимость операции на , и не изменив стоимость остальных операций.См. также
Источники
- Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.)