Дерево Фенвика — различия между версиями
Строка 5: | Строка 5: | ||
# выполнять некоторую ассоциативную, коммутативную, обратимую операцию <tex> G </tex> на отрезке <tex> [i, j] </tex>. | # выполнять некоторую ассоциативную, коммутативную, обратимую операцию <tex> G </tex> на отрезке <tex> [i, j] </tex>. | ||
}} | }} | ||
− | [[Файл:Bit.jpg|thumb|300px|По горизонтали - содержимое массива T,<br/> по вертикали - содержимое массива A]] | + | [[Файл:Bit.jpg|thumb|300px|По горизонтали - содержимое массива <tex>T</tex> <br/> (<tex>T_i</tex> является суммой заштрихованных ячеек массива <tex>A</tex>),<br/> по вертикали - содержимое массива <tex>A</tex>]] |
Впервые описано Питером Фенвиком в 1994 году. | Впервые описано Питером Фенвиком в 1994 году. | ||
Строка 27: | Строка 27: | ||
{{Лемма | {{Лемма | ||
|statement= Все такие <tex> i </tex> удовлетворяют равенству <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex>, где <tex> \mid </tex> — это операция побитового логического "ИЛИ". | |statement= Все такие <tex> i </tex> удовлетворяют равенству <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex>, где <tex> \mid </tex> — это операция побитового логического "ИЛИ". | ||
− | |proof=Первый элемент последовательности само <tex> k </tex>. Для него выполняется равенство, так как <tex> F(i) | + | |proof=Первый элемент последовательности само <tex> k </tex>. Для него выполняется равенство, так как <tex> F(i) \leqslant i </tex>. По формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex> мы заменим первый ноль на единицу. Неравенство при этом сохранится, так как <tex>F(i)</tex> осталось прежним или уменьшилось, а <tex> i </tex> увеличилось. Можем заметить, что если количество единиц в конце не будет совпадать с <tex> k </tex>, то формула <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex> нарушит неравенство, потому что либо само <tex> i </tex> будет меньше, чем k, либо <tex> F(i) </tex> станет больше, чем <tex> k </tex>. Таким образом, перебраны будут только нужные элементы}} |
Все <tex>i</tex> мы можем получить следующим образом : <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex>. Следующим элементом в последовательности будет элемент, у которого первый с конца ноль превратится в единицу. Можно заметить, что если к исходному элементу прибавить единицу, то необходимый ноль обратится в единицу, но при этом все следующие единицы обнулятся. Чтобы обратно их превратить в единицы, применим операцию побитового ИЛИ. Таким образом все нули в конце превратятся в единицы и мы получим нужный элемент. Для того, чтобы понять, что эта последовательность верна, достаточно посмотреть на таблицу. | Все <tex>i</tex> мы можем получить следующим образом : <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex>. Следующим элементом в последовательности будет элемент, у которого первый с конца ноль превратится в единицу. Можно заметить, что если к исходному элементу прибавить единицу, то необходимый ноль обратится в единицу, но при этом все следующие единицы обнулятся. Чтобы обратно их превратить в единицы, применим операцию побитового ИЛИ. Таким образом все нули в конце превратятся в единицы и мы получим нужный элемент. Для того, чтобы понять, что эта последовательность верна, достаточно посмотреть на таблицу. |
Версия 14:27, 24 мая 2015
Определение: |
Дерево Фе́нвика (англ. Binary indexed tree) — структура данных, требующая
| памяти и позволяющая эффективно (за )
Впервые описано Питером Фенвиком в 1994 году.
Пусть дан массив
Деревом Фенвика будем называть массив из элементов: , где — некоторая функция.
От выбора функции зависит время работы операций над деревом. Рассмотрим функцию, позволяющую делать обе операции за время .
где - количество единиц в конце бинарной записи числа . Эту функцию можно записать так: где то есть число, состоящее из единиц. Это значит, что функция заменяет все подряд идущие единицы в конце числа на нули.
Эта функция задается простой формулой:
, где — это операция побитового логического "И". При побитовом "И" числа и его значения, увеличенного на единицу, мы получаем это число без последних подряд идущих единиц.Содержание
Запрос изменения элемента
Нам надо научиться быстро изменять частичные суммы в зависимости от того, как изменяются элементы. Рассмотрим как изменять величину
.Лемма: |
Для изменения величины необходимо изменить элементы дерева , для которых верно неравенство . |
Доказательство: |
необходимо менять те , для которых попадает в необходимые удовлетворяют условию . |
Лемма: |
Все такие удовлетворяют равенству , где — это операция побитового логического "ИЛИ". |
Доказательство: |
Первый элемент последовательности само | . Для него выполняется равенство, так как . По формуле мы заменим первый ноль на единицу. Неравенство при этом сохранится, так как осталось прежним или уменьшилось, а увеличилось. Можем заметить, что если количество единиц в конце не будет совпадать с , то формула нарушит неравенство, потому что либо само будет меньше, чем k, либо станет больше, чем . Таким образом, перебраны будут только нужные элементы
Все
мы можем получить следующим образом : . Следующим элементом в последовательности будет элемент, у которого первый с конца ноль превратится в единицу. Можно заметить, что если к исходному элементу прибавить единицу, то необходимый ноль обратится в единицу, но при этом все следующие единицы обнулятся. Чтобы обратно их превратить в единицы, применим операцию побитового ИЛИ. Таким образом все нули в конце превратятся в единицы и мы получим нужный элемент. Для того, чтобы понять, что эта последовательность верна, достаточно посмотреть на таблицу.
Несложно заметить, что данная последовательность строго возрастает и в худшем случае будет применена логарифм раз, так как добавляет каждый раз по одной единице в двоичном разложении числа .
Напишем функцию, которая будет изменять элемент на , и при этом меняет соответствующие частичные суммы.
function modify(i, d): while i < N t[i] += d i = i | (i + 1)
Запрос получения суммы на префиксе
В качестве бинарной операции
Обозначим . Тогда .
Лемма: |
входит в сумму для , если . |
Для доказательства леммы рассмотрим битовую запись следующих чисел:
Реализация
Приведем код функции
:int sum(i): result = 0; while i >= 0 result += t[i]; i = f(i) - 1; return result;
Преимущества и недостатки дерева Фенвика
Главными преимуществами данной конструкции являются простота реализации и быстрота ответов на запросы за
. Также дерево Фенвика позволяет быстро изменять значения в массиве и находить некоторые функции от элементов массива. Недостатком является то, что при изменении одного элемента исходного массива, приходится пересчитывать частичные суммы, а это затратно по времени.