1ripi1sumwc — различия между версиями
Строка 37: | Строка 37: | ||
'''Описание алгоритма''' | '''Описание алгоритма''' | ||
− | Нам нужно распределить <tex>n</tex> работ в разное время. Если мы назначим время <tex>t</tex> для работы <tex>i</tex> то цена будет <tex>f_i(t + 1)</tex>. Так как нужно | + | Нам нужно распределить <tex>n</tex> работ в разное время. Если мы назначим время <tex>t</tex> для работы <tex>i</tex> то цена будет <tex>f_i(t + 1)</tex>. Так как нужно заполнить <tex>n</tex> временных промежутков, задача может быть решена за <tex>O(n^3)</tex>. Функция <tex>f_i</tex> монотонно неубывающая, тогда работы в расписании надо располагать как можно раньше для получения верного решения. <tex>n</tex> временных интервалов <tex>t_i</tex> для <tex>n</tex> работ могут быть получены с помощью следующего алгоритма, где предполагается что работы нумеруются так: |
<tex> r_1 \leqslant r_2 \leqslant \ldots \leqslant r_n</tex> | <tex> r_1 \leqslant r_2 \leqslant \ldots \leqslant r_n</tex> | ||
Строка 78: | Строка 78: | ||
'''while''' <tex> S \neq \varnothing </tex> | '''while''' <tex> S \neq \varnothing </tex> | ||
<tex> j \leftarrow null </tex> | <tex> j \leftarrow null </tex> | ||
− | '''if''' <tex> i \in S</tex> '''and''' <tex> r_{i} \leqslant \mathtt{time}</tex> '''and''' <tex>\ | + | '''if''' <tex> i \in S</tex> '''and''' <tex> r_{i} \leqslant \mathtt{time}</tex> '''and''' <tex>w_i \geqslant max_{j = 1}^n w_j</tex> |
<tex> j \leftarrow i </tex> | <tex> j \leftarrow i </tex> | ||
'''if''' <tex>j \neq null </tex> | '''if''' <tex>j \neq null </tex> | ||
Строка 86: | Строка 86: | ||
==Сложность алгоритма== | ==Сложность алгоритма== | ||
− | Множество <tex>S</tex> станет пустым не позже, чем через <tex>n + \ | + | Множество <tex>S</tex> станет пустым не позже, чем через <tex>n + \max_{i = 1}^n r_{i}</tex> шагов цикла. Определить максимум в множестве можно за время <tex>O(\log n)</tex>, используя , например, [[Wikipedia:ru:Очередь с приоритетом (программирование)|очередь с приоритетами]]. Значит общее время работы алгоритма <tex>O((n + \max_{i = 1}^n r_{i})\log n)</tex> |
Версия 00:27, 3 июня 2015
Задача: |
Дано | работ и один станок. Для каждой работы известно её время появления и вес . Время выполнения всех работ равно . Требуется выполнить все работы, чтобы значение было минимальным, где — время окончания работы.
Перед решением основной задачи рассмотрим более простые.
Содержание
Просты задачи
Задача 1
Описание алгоритма
Входные данные для этой задачи: число работ
Этот случай простейший. Для верного выполнения просто выставим работы по порядку, тогда ответом будет
, так как мы раз сложим время выполнения одной работы, которое в нашем случае единица.Задача 2
Описание алгоритма
Входные данные для этой задачи: число работ
и вес каждой работыДля верного выполнения просто выставим работы по порядку убывания весов, тогда ответом будет
, так как мы раз сложим время выполнения одной работы (которое в нашем случае единица) домноженное на вес этой работы.Задача 3
Задача: |
Дано | работ и один станок. Для каждой работы известно её время появления . Время выполнения всех работ равно . Требуется выполнить все работы, чтобы значение было минимальным, где — монотонная функция времени окончания работы для работ .
Описание алгоритма
Нам нужно распределить
работ в разное время. Если мы назначим время для работы то цена будет . Так как нужно заполнить временных промежутков, задача может быть решена за . Функция монотонно неубывающая, тогда работы в расписании надо располагать как можно раньше для получения верного решения. временных интервалов для работ могут быть получены с помощью следующего алгоритма, где предполагается что работы нумеруются так:
Псевдокод
for to do max
Описание алгоритма
Пусть
Для каждого очередного значения , которое изменяется от до времени окончания последней работы, будем:
- Выбирать работу из множества невыполненных работ, у которой , а значение максимально.
- Если мы смогли найти работу , то выполняем её в момент времени и удаляем из множества невыполненных работ.
- Увеличиваем на один.
Доказательство корректности алгоритма
Теорема: |
Расписание, построенное данным алгоритмом, является корректным и оптимальным. |
Доказательство: |
Доказательство будем вести от противного. Первая скобка отрицательная: |
Псевдокод
while if and and if
Сложность алгоритма
Множество очередь с приоритетами. Значит общее время работы алгоритма
станет пустым не позже, чем через шагов цикла. Определить максимум в множестве можно за время , используя , например,
Источники информации
- P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 19 - 20
- P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 38 - 39
- P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 84 - 85