Цепные коды — различия между версиями
Ден (обсуждение | вклад) |
Ден (обсуждение | вклад) |
||
Строка 5: | Строка 5: | ||
Для получения цепного кода используется жадный алгоритм. Первон слово кода — слово, полностью состоящая из нулей. Образуя каждое следующее слово, мы сдвигаем предыдущее влево на один разряд, отбрасывая старший, затем добавляем в конец 1 и проверяем, не было ли такого слова раньше. Если было, то меняем последнюю единицу на ноль. | Для получения цепного кода используется жадный алгоритм. Первон слово кода — слово, полностью состоящая из нулей. Образуя каждое следующее слово, мы сдвигаем предыдущее влево на один разряд, отбрасывая старший, затем добавляем в конец 1 и проверяем, не было ли такого слова раньше. Если было, то меняем последнюю единицу на ноль. | ||
====Почему алгоритм работает?==== | ====Почему алгоритм работает?==== | ||
− | + | Во-первых, в этом алгоритме никогда не будет ситуации, когда нам надо образовать новое слово, а оба возможных вариантов (добавление 0 или 1) уже были использованы. | |
Допустим, мы наткнулись на эту ситуацию в первый раз, то есть уже было 2 слова, которые начинались таким же набором единиц и нулей и отличались только в последнем разряде. Но они были получены из двух слов, которые отличаются только в первом разряде, значит, мы должны были столкнуться с данной ситуацией на шаг раньше, но мы предполагали, что это первый подобный случай и пришли к противоречию. Следовательно, мы не можем столкнуться с данной ситуацией. | Допустим, мы наткнулись на эту ситуацию в первый раз, то есть уже было 2 слова, которые начинались таким же набором единиц и нулей и отличались только в последнем разряде. Но они были получены из двух слов, которые отличаются только в первом разряде, значит, мы должны были столкнуться с данной ситуацией на шаг раньше, но мы предполагали, что это первый подобный случай и пришли к противоречию. Следовательно, мы не можем столкнуться с данной ситуацией. | ||
− | Во-вторых, мы не сможем снова вернуться к слову из всех нулей, пока не переберем все <math>2^n</math> слов, где n — длина слова. Чтобы снова получить | + | Во-вторых, мы не сможем снова вернуться к слову из всех нулей, пока не переберем все <math>2^n</math> слов, где n — длина слова. Чтобы снова получить нулевую строку, мы должны будем перебрать все строки, в которых есть 1, тк мы по возможности добавляем именно 1, а 0 только если такое число уже было. |
Версия 04:17, 12 ноября 2010
Алгоритм получения цепного кода для двоичного вектора
Для получения цепного кода используется жадный алгоритм. Первон слово кода — слово, полностью состоящая из нулей. Образуя каждое следующее слово, мы сдвигаем предыдущее влево на один разряд, отбрасывая старший, затем добавляем в конец 1 и проверяем, не было ли такого слова раньше. Если было, то меняем последнюю единицу на ноль.
Почему алгоритм работает?
Во-первых, в этом алгоритме никогда не будет ситуации, когда нам надо образовать новое слово, а оба возможных вариантов (добавление 0 или 1) уже были использованы. Допустим, мы наткнулись на эту ситуацию в первый раз, то есть уже было 2 слова, которые начинались таким же набором единиц и нулей и отличались только в последнем разряде. Но они были получены из двух слов, которые отличаются только в первом разряде, значит, мы должны были столкнуться с данной ситуацией на шаг раньше, но мы предполагали, что это первый подобный случай и пришли к противоречию. Следовательно, мы не можем столкнуться с данной ситуацией.
Во-вторых, мы не сможем снова вернуться к слову из всех нулей, пока не переберем все
слов, где n — длина слова. Чтобы снова получить нулевую строку, мы должны будем перебрать все строки, в которых есть 1, тк мы по возможности добавляем именно 1, а 0 только если такое число уже было.