Вещественный двоичный поиск — различия между версиями
Lytr777 (обсуждение | вклад) (добавлен метод Ньютона) |
(Правка №1) |
||
Строка 54: | Строка 54: | ||
== Метод секущих == | == Метод секущих == | ||
− | [[Файл:Secant method.png|thumb| | + | [[Файл:Secant method.png|thumb|350px|right|Метод секущих при <tex> C = 0 </tex>]] |
Итерационный численный метод приближённого нахождения корня уравнения. | Итерационный численный метод приближённого нахождения корня уравнения. | ||
Строка 62: | Строка 62: | ||
Вычисляем каждое последующее значение <tex> x_{n+1} </tex> с помощью формулы: | Вычисляем каждое последующее значение <tex> x_{n+1} </tex> с помощью формулы: | ||
− | <tex dpi=130> x_{n+1} = x_{n-1} + \ | + | <tex dpi=130> x_{n+1} = x_{n-1} + \dfrac{(C - f(x_{n}))\cdot(x_{n} - x_{n-1})}{f(x_{n}) - f(x_{n-1})} </tex> |
Нахождение нулей функции <tex>(C = 0)</tex>: | Нахождение нулей функции <tex>(C = 0)</tex>: | ||
− | <tex dpi=130> x_{n+1} = x_{n-1} - \ | + | <tex dpi=130> x_{n+1} = x_{n-1} - \dfrac{f(x_{n})\cdot(x_{n} - x_{n-1})}{f(x_{n}) - f(x_{n-1})} </tex> |
=== Псевдокод === | === Псевдокод === | ||
<code> | <code> | ||
− | '''double''' search (a : '''double''', b : '''double'''): <font color=green> // Где a - левая граница, а b - правая </font> | + | '''double''' search (a : '''double''', b : '''double''', eps : '''double'''): <font color=green> // Где a {{---}} левая граница, а b {{---}} правая </font> |
'''while''' |a - b| > eps | '''while''' |a - b| > eps | ||
− | a = b - (b - a) * f(b)/(f(b) - f(a)) | + | a = b - (b - a) * f(b) / (f(b) - f(a)) |
− | b = a - (a - b) * f(a)/(f(a) - f(b)) | + | b = a - (a - b) * f(a) / (f(a) - f(b)) |
'''return''' b | '''return''' b | ||
</code> | </code> | ||
Строка 85: | Строка 85: | ||
Задана монотонная, дифференцируемая функция и начальное значение <tex> x_{0} </tex>. Построим касательную к нашей функции в заданной точке и найдем новую точку <tex> x_{1} </tex>, как пересечения касательной и оси абсцисс. Пока не выполнено заданное условие, например <tex> f(x_{n}) < \varepsilon </tex>, вычисляем новое значение <tex> x_{n+1} </tex> по формуле: | Задана монотонная, дифференцируемая функция и начальное значение <tex> x_{0} </tex>. Построим касательную к нашей функции в заданной точке и найдем новую точку <tex> x_{1} </tex>, как пересечения касательной и оси абсцисс. Пока не выполнено заданное условие, например <tex> f(x_{n}) < \varepsilon </tex>, вычисляем новое значение <tex> x_{n+1} </tex> по формуле: | ||
− | <tex dpi=130> x_{n+1} = x_{n} - \ | + | <tex dpi=130> x_{n+1} = x_{n} - \dfrac{f(x_{n})}{f'(x_{n})} </tex> |
=== Псевдокод === | === Псевдокод === | ||
<code> | <code> | ||
− | '''double''' search (x : '''double'''): | + | '''double''' search (x : '''double''', eps : '''double'''): |
'''while''' f(x) > eps | '''while''' f(x) > eps | ||
x = x - f(x) / f'(x) | x = x - f(x) / f'(x) | ||
− | return x | + | '''return''' x |
+ | </code> | ||
+ | |||
+ | === Пример === | ||
+ | Найдём корень <tex> n </tex> степени с помощью метода Ньютона. Пусть даны числа <tex> C </tex> и <tex> n </tex> {{---}} число и корень какой степень нам нужно посчитать соответственно. Составим функцию <tex> f(x) = x^n - C </tex>, тогда её пересечение с осью абсцисс и будет искомым корнем. | ||
+ | |||
+ | <code> | ||
+ | '''double''' nthRoot (C : '''double''', n : '''double''', eps : '''double''') | ||
+ | '''while''' pow(x, n) - C > eps | ||
+ | x = x - (pow(x, n) - C) / (n * pow(x, n - 1)) | ||
+ | '''return''' x | ||
</code> | </code> | ||
Строка 102: | Строка 112: | ||
* [[Целочисленный двоичный поиск]] | * [[Целочисленный двоичный поиск]] | ||
− | == Источники информации == | + | == Источники информации == |
* [http://en.wikipedia.org/wiki/Bisection_method Bisection method {{---}} Wikipedia] | * [http://en.wikipedia.org/wiki/Bisection_method Bisection method {{---}} Wikipedia] | ||
+ | * [http://en.wikipedia.org/wiki/Newton%27s_method Newton's method {{---}} Wikipedia] | ||
* [http://www.youtube.com/watch?v=qkLLcdgJj_o Видеолекция "сортировка и поиск"] | * [http://www.youtube.com/watch?v=qkLLcdgJj_o Видеолекция "сортировка и поиск"] | ||
* [http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=binarySearch Binary search {{---}} Topcoder] | * [http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=binarySearch Binary search {{---}} Topcoder] |
Версия 00:36, 8 июня 2015
Вещественный двоичный поиск (англ. Bisection method)— алгоритм поиска аргумента для заданного значения монотонной вещественной функции.
Содержание
Формулировка задачи
Пусть нам задана монотонная функция
и какое-то значение этой функции. Необходимо найти значение аргумента этой функции, такое, что .Решение задачи
Применим идею двоичного поиска. Выберем такие границы, где значение функции точно больше и точно меньше заданного значения. Выберем значение в середине этого отрезка. Если оно меньше, чем заданное, то сместим левую границу в середину отрезка. В противном случае сместим правую границу. Далее повторим процесс сужения границ. Встает вопрос, когда остановиться. Есть несколько способов сделать это.
Способы закончить поиск
Способы | Плюсы | Минусы | Оценка на число итераций |
---|---|---|---|
Окончание, когда рассматриваемый отрезок станет меньше заданной погрешности | .Заданная точность найденного значения. | Алгоритм может зациклиться. В компьютере мы работаем с конечным числом вещественных чисел, у которых есть точность. При больших значениях функции длина отрезка может никогда не уменьшиться до заданного значения. | В данном случае нам нужно рассмотреть | чисел примерное число итераций .
Окончание, когда значение функции на концах отрезках различается менее, чем на заданную погрешность | .Значение функции от найденного значения имеет заданную точность. | а) Возможна большая погрешность, если функция будет очень медленно возрастать. б) Может зациклиться по той же причине, что и в первом способе. |
Аналогичная с первым случаем логика, примерное число итераций | .
«Абсолютно точный поиск» Окончание, когда границы отрезка — два соседних по представлению значения в типе данных. Утверждается, что два числа — соседние, если середина их отрезка совпадает или с левой, или с правой границей. |
Максимально возможная точность найденного значения. | Возможно плохое поведение, если искомый аргумент равен нулю. | При работе с числами с плавающей точкой количество итераций зависит от плотности чисел на данном отрезке. При работе с числами фиксированной точности | количество итераций аналогично первому и второму случаю равно .
«Итеративный способ» Выполнение конечного числа итераций. |
У способа фиксированная погрешность. | Довольно плохая точность, если границы отрезка находятся на большом расстоянии. | Выполняется заданное количество итераций. |
Выбор границы отрезка для поиска
Для начала найдем левую границу, выберем произвольную отрицательную точку (например
). Будем удваивать ее до тех пор, пока значение в ней будет больше заданного значения. Для того, чтобы найти правую границу, выберем произвольную положительную точку (например ). Будем удваивать ее до тех пор, пока значение функции в этой точке меньше заданного.Псевдокод
double findLeftBoard(C : double): x = -1 while f(x) > C x = x * 2 return x
double findRightBoard(C : double): x = 1 while f(x) < C x = x * 2 return x
double binSearch(C : double): left = findLeftBoard(C) right = findRightBoard(C) while right - left < eps // Здесь можно использовать другое условие выхода mid = (left + right) / 2 if f(mid) < C left = mid else right = mid return (left + right) / 2
Метод секущих
Итерационный численный метод приближённого нахождения корня уравнения.
Алгоритм
Пусть нам задана монотонная
и значение . Выберем две начальные точки, причем , а . Проведем через них прямую, которая пересечет прямую в точке . Теперь вместо точек и возьмем точки и , и проделаем ту же операцию и так далее, получая точки и , пока . Вычисляем каждое последующее значение с помощью формулы:
Нахождение нулей функции
:
Псевдокод
double search (a : double, b : double, eps : double): // Где a — левая граница, а b — правая while |a - b| > eps a = b - (b - a) * f(b) / (f(b) - f(a)) b = a - (a - b) * f(a) / (f(a) - f(b)) return b
Метод Ньютона
Итерационный численный метод нахождения нуля заданной функции.
Алгоритм
Задана монотонная, дифференцируемая функция и начальное значение
. Построим касательную к нашей функции в заданной точке и найдем новую точку , как пересечения касательной и оси абсцисс. Пока не выполнено заданное условие, например , вычисляем новое значение по формуле:
Псевдокод
double search (x : double, eps : double): while f(x) > eps x = x - f(x) / f'(x) return x
Пример
Найдём корень
степени с помощью метода Ньютона. Пусть даны числа и — число и корень какой степень нам нужно посчитать соответственно. Составим функцию , тогда её пересечение с осью абсцисс и будет искомым корнем.
double nthRoot (C : double, n : double, eps : double) while pow(x, n) - C > eps x = x - (pow(x, n) - C) / (n * pow(x, n - 1)) return x
Замечания
- Необходимо отметить, то функция должна быть строго монотонна, если мы ищем конкретный корень и он единственный. Нестрого монотонна, если нам необходимо найти самый левый (правый) аргумент. Если же функция не монотонна, то данный алгоритм не найдет искомый аргумент, либо найдет аргумент, но он не будет единственным.
- Классической задачей на вещественный двоичный поиск является задача поиска корня -ой степени из числа : . При нижней границей для поиска будет , а верхней — .