Z-функция — различия между версиями
Iloskutov (обсуждение | вклад) (Определение) |
Iloskutov (обсуждение | вклад) (→Эффективный алгоритм поиска: заменил HTML-разметку на вики (знать бы ещё, зачем)) |
||
Строка 27: | Строка 27: | ||
Рассмотрим два случая. | Рассмотрим два случая. | ||
− | + | # <tex>i > right</tex>:<br><!-- | |
− | + | -->Просто пробегаемся по строке <tex>S</tex> и сравниваем символы на позициях <tex>S[i+j]</tex> и <tex>S[j]</tex>.<!-- | |
− | Просто пробегаемся по строке <tex>S</tex> и сравниваем символы на позициях <tex>S[i+j]</tex> и <tex>S[j]</tex>. | + | -->Пусть <tex>j</tex> первая позиция в строке <tex>S</tex> для которой не выполняется равенство <tex>S[i+j] = S[j]</tex>, тогда <tex>j</tex> это и Z-функция для позиции <tex>i</tex>. Тогда <tex>left = i, right = i + j - 1</tex>. В данном случае будет определено корректное значение <tex>Z[i]</tex> в силу того, что оно определяется наивно, путем сравнения с начальными символами строки. |
− | Пусть <tex>j</tex> первая позиция в строке <tex>S</tex> для которой не выполняется равенство <tex>S[i+j] = S[j]</tex>, тогда <tex>j</tex> это и Z-функция для позиции <tex>i</tex>. Тогда <tex>left = i, right = i + j - 1</tex>. В данном случае будет определено корректное значение <tex>Z[i]</tex> в силу того, что оно определяется наивно, путем сравнения с начальными символами строки. | + | # <tex>i \leqslant right</tex>:<br><!-- |
− | + | -->Сравним <tex>Z[i - left] + i</tex> и <tex>right</tex>. Если <tex>right</tex> меньше, то надо просто наивно пробежаться по строке начиная с позиции <tex>right</tex> и вычислить значение <tex>Z[i]</tex>. Корректность в таком случае также гарантирована.<!-- | |
− | + | -->Иначе мы уже знаем верное значение <tex>Z[i]</tex>, так как оно равно значению <tex>Z[i - left]</tex>. | |
− | Сравним <tex>Z[i - left] + i</tex> и <tex>right</tex>. Если <tex>right</tex> меньше, то надо просто наивно пробежаться по строке начиная с позиции <tex>right</tex> и вычислить значение <tex>Z[i]</tex>. Корректность в таком случае также гарантирована. | ||
− | Иначе мы уже знаем верное значение <tex>Z[i]</tex>, так как оно равно значению <tex>Z[i - left]</tex>. | ||
[[Файл:z-func.png]] | [[Файл:z-func.png]] | ||
− | |||
=== Время работы === | === Время работы === |
Версия 09:07, 8 июня 2015
Определение: |
Z-функция от строки | и позиции — это длина максимального префикса подстроки, начинающейся с позиции в строке , который одновременно является и префиксом всей строки . Более формально, . Значение Z-функции от первой позиции не определено, поэтому его обычно приравнивают к нулю или к длине строки.
Примечание: далее в конспекте символы строки нумеруются с нуля.
Содержание
Тривиальный алгоритм
Простая реализация за
, где — длина строки. Для каждой позиции перебираем для неё ответ, начиная с нуля, пока не обнаружим несовпадение или не дойдем до конца строки.Псевдокод
int[] zFunction(string s) int[] zf = int[n] for i = 1 .. n − 1 while i + zf[i] < n and s[zf[i]] == s[i + zf[i]] zf[i]++ return zf
Эффективный алгоритм поиска
Z-блоком назовем подстроку с началом в позиции
Для работы алгоритма заведём две переменные: и — начало и конец Z-блока строки с максимальной позицией конца (среди всех таких Z-блоков, если их несколько, выбирается наибольший). Изначально и .
Пусть нам известны значения Z-функции от до . Найдём .
Рассмотрим два случая.
-
Просто пробегаемся по строке и сравниваем символы на позициях и .Пусть первая позиция в строке для которой не выполняется равенство , тогда это и Z-функция для позиции . Тогда . В данном случае будет определено корректное значение в силу того, что оно определяется наивно, путем сравнения с начальными символами строки.
: -
Сравним и . Если меньше, то надо просто наивно пробежаться по строке начиная с позиции и вычислить значение . Корректность в таком случае также гарантирована.Иначе мы уже знаем верное значение , так как оно равно значению . :
Время работы
Этот алгоритм работает за
, так как каждая позиция пробегается не более двух раз: при попадании в диапазон от до и при высчитывании Z-функции простым циклом.Псевдокод
int[] zFunction(string s) int[] zf = int[n] int left = 0, right = 0 for i = 1 .. n - 1 zf[i] = max(0, min(right - i, zf[i - left])) while i + zf[i] < n and s[zf[i]] == s[i + zf[i]] zf[i]++ if i + zf[i] >= right left = i right = i + zf[i] return zf
Поиск подстроки в строке с помощью Z-функции
Образуем строку , где — символ, не встречающийся ни в , ни в . Вычисляем Z-функцию от этой строки.
В полученном массиве, в позициях в которых значение Z-функции равно , по определению начинается подстрока, совпадающая с .
Псевдокод
int substringSearch(string source, string needle) int[] zf = zFunction(needle + '#' + source) for i = m + 1 .. n + m if zf[i] == m return i