Пересечение матроидов, определение, примеры — различия между версиями
| Строка 14: | Строка 14: | ||
| {{Утверждение | {{Утверждение | ||
| |statement = | |statement = | ||
| − | Пересечение данных матроидов является матроидом. | + | Пересечение данных матроидов не является матроидом. | 
| |proof = | |proof = | ||
| − | Рассмотрим пару <tex>\langle X, \mathcal{I}\rangle</tex>, <tex>X</tex> {{---}}  | + | Рассмотрим пару <tex>\langle X, \mathcal{I}\rangle</tex>, <tex>X</tex> {{---}} ребра разноцветного леса, <tex> \mathcal{I} = \mathcal{I}_1 \cap \mathcal{I}_2</tex>. | 
| + | Данная пара не является матроидом, так как не выполняется третье свойство матроида, то есть <tex>\exists A, B \in I, |A| > |B| </tex> и <tex>\nexists \, x \in A \setminus B : B \cup \{x\} \in I</tex> (См. пример 1) | ||
| + | [[Файл:Example2_DY.png|300px|thumb|left|Пример 1]] | ||
| }} | }} | ||
| Строка 27: | Строка 29: | ||
| |proof = | |proof = | ||
| Рассмотрим пару <tex>\langle X, \mathcal{I}\rangle</tex>, <tex>X</tex> {{---}} носитель, <tex> \mathcal{I} = \mathcal{I}_1 \cap \mathcal{I}_2</tex>. | Рассмотрим пару <tex>\langle X, \mathcal{I}\rangle</tex>, <tex>X</tex> {{---}} носитель, <tex> \mathcal{I} = \mathcal{I}_1 \cap \mathcal{I}_2</tex>. | ||
| − | Данная пара не является матроидом, так как не выполняется третье свойство матроида, то есть <tex>\exists A, B \in I, |A| > |B| </tex> и <tex>\nexists \, x \in A \setminus B : B \cup \{x\} \in I</tex> (См. пример  | + | Данная пара не является матроидом, так как не выполняется третье свойство матроида, то есть <tex>\exists A, B \in I, |A| > |B| </tex> и <tex>\nexists \, x \in A \setminus B : B \cup \{x\} \in I</tex> (См. пример 2) | 
| − | [[Файл:Example_DY.png| | + | [[Файл:Example_DY.png|300px|thumb|left|Пример 2]] | 
| }} | }} | ||
Версия 23:39, 8 июня 2015
| Определение: | 
| Пусть даны два матроида и . Пересечением матроидов (англ. matroid intersection) и называется пара , где — носитель исходных матроидов, а . | 
- Пересечение матроидов не всегда является матроидом.
- Пересечение трех и более матроидов — это NP-полная задача.
Содержание
Разноцветное дерево
— графовый матроид, — разноцветный матроид (англ. multicolored matroid) (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение — это разноцветный лес (англ. rainbow forests).
| Утверждение: | 
| Пересечение данных матроидов не является матроидом. | 
| Рассмотрим пару , — ребра разноцветного леса, . Данная пара не является матроидом, так как не выполняется третье свойство матроида, то есть и (См. пример 1) | 
Двудольный граф
Пусть — двудольный граф и заданы два матроида , , где — множество ребёр графа, , . Тогда их пересечение — это множество всевозможных паросочетаний графа.
| Утверждение: | 
| Пересечение данных матроидов не является матроидом. | 
| Рассмотрим пару , — носитель, . Данная пара не является матроидом, так как не выполняется третье свойство матроида, то есть и (См. пример 2) | 
Ориентированное дерево
| Определение: | 
| Ориентированное дерево (англ. arborescence) — ацикличный орграф (ориентированный граф, не содержащий циклов), в котором только одна вершина имеет нулевую степень захода (в неё не ведут дуги), а все остальные вершины имеют степень захода 1 (в них ведёт ровно по одной дуге). | 
Пусть — -ориентированное дерево. Пусть граф — неориентированный граф, соответствующий графу . Тогда рассмотрим два матроида , где — множество ребёр графа, — графовый матроид , . Пересечения данных матроидов является ориентированным деревом.
См. также
- Примеры_матроидов
- Алгоритм_построения_базы_в_пересечении_матроидов
- Алгоритм_построения_базы_в_объединении_матроидов
Источники информации
- Асанов М. О., Баранский В. А., Расин В. В. — Дискретная математика: Графы, матроиды, алгоритмы (глава 4. Матроиды)
- Lecture notes on matroid intersection


