QSumCi — различия между версиями
(→Алгоритм решения) |
(→Литература) |
||
Строка 22: | Строка 22: | ||
Начальная сортировка работ занимается <tex>O(n\log{n})</tex> времени. Затем происходит выбор минимальных коэффициентов, посредством приоритетной очереди время работы составит <tex>O(n\log{m})</tex>. Итого суммарное время работы <tex> O(n(\log{n}+\log{m}))</tex>. | Начальная сортировка работ занимается <tex>O(n\log{n})</tex> времени. Затем происходит выбор минимальных коэффициентов, посредством приоритетной очереди время работы составит <tex>O(n\log{m})</tex>. Итого суммарное время работы <tex> O(n(\log{n}+\log{m}))</tex>. | ||
− | == | + | == Источники информации == |
− | * Peter Brucker | + | * Peter Brucker Scheduling Algorithms {{---}} Springer, 2006. {{---}} с. 133. {{---}} ISBN 978-3-540-69515-8 |
+ | |||
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Теория расписаний]] | [[Категория: Теория расписаний]] |
Версия 00:49, 13 июня 2015
Постановка задачи
Есть несколько станков с разной скоростью выполнения работ и несколько работ с заданным временем выполнения.
Цель — составить такое расписание, чтобы суммарное время окончания всех работ было минимальным.
Алгоритм решения
Пусть Отсюда видно, что сумма оптимальна, когда последовательность не убывает. Теперь введем неубывающую последовательность , которая состоит из минимальных элементов из множества . Тогда показывает на каком станке и какой по счету с конца должна выполняться работа с номером в отсортированном по длительности списке работ. Сопоставляя работы и составляем расписание.
последовательность работ, выполняемых на станке с номером . Тогда вклад этих работ в целевую функцию будет равен .Теорема: |
Приведенный алгоритм верен. |
Доказательство: |
|
Время работы
Начальная сортировка работ занимается
времени. Затем происходит выбор минимальных коэффициентов, посредством приоритетной очереди время работы составит . Итого суммарное время работы .Источники информации
- Peter Brucker Scheduling Algorithms — Springer, 2006. — с. 133. — ISBN 978-3-540-69515-8