Покрытия, закрытые множества — различия между версиями
Shiplayer (обсуждение | вклад) (→Покрытие) |
Shiplayer (обсуждение | вклад) м (→Покрытие) |
||
Строка 38: | Строка 38: | ||
{{Теорема | {{Теорема | ||
|statement = Покрытие обладает следующими свойствами: | |statement = Покрытие обладает следующими свойствами: | ||
− | # <tex> | + | # <tex> T, U \subseteq S;\ U \subseteq span(T) \ \Rightarrow \ span(U) \subseteq span(T) </tex> |
− | # <tex> | + | # <tex> T \subseteq S,\ t \in S \setminus T,\ s \in span(T \cup t) \setminus span(T) \ \Rightarrow \ t \in span(T \cup s) </tex> |
|proof ='''Необходимое условие'''. Пусть <tex> span </tex> будет функцией покрытия матроида <tex> M = (S, L) </tex> с ранговой функцией <tex> r </tex>. Покажем, что <tex> s \in span(T)</tex>. Пусть <tex>U \subseteq span(T)</tex> и <tex>s \in span(U)</tex>. Предположим, что <tex> s </tex> не принадлежит <tex>T</tex>. Тогда по [[ Ранговая_функция, полумодулярность | полумодулярность ранговой функции]] мы имеем: | |proof ='''Необходимое условие'''. Пусть <tex> span </tex> будет функцией покрытия матроида <tex> M = (S, L) </tex> с ранговой функцией <tex> r </tex>. Покажем, что <tex> s \in span(T)</tex>. Пусть <tex>U \subseteq span(T)</tex> и <tex>s \in span(U)</tex>. Предположим, что <tex> s </tex> не принадлежит <tex>T</tex>. Тогда по [[ Ранговая_функция, полумодулярность | полумодулярность ранговой функции]] мы имеем: | ||
: <tex> r(T \cup {s}) <= r(T \cup U \cup {s}) <= r(T \cup U) + r(U \cup {s}) - r(U) = r(T \cup U) = r(T)</tex> | : <tex> r(T \cup {s}) <= r(T \cup U \cup {s}) <= r(T \cup U) + r(U \cup {s}) - r(U) = r(T \cup U) = r(T)</tex> |
Версия 15:35, 15 июня 2015
Покрытие
Определение: |
Пусть | — матроид. Тогда покрытие (англ. span) множества — это множество
Далее
будет указываться, как
Определение: |
Утверждение: |
Эти определения эквивалентны. |
Понятно, что элементы из Иначе говоря, не должно существовать множеств подходят под оба определения. Для остальных же равенство означает, что не найдётся множеств Для такого обязательно будет выполнено в противном случае что приведёт к Тогда для верно Из последнего получается, что и учитывая имеем |
Утверждение: |
Для множества выполнено |
Покажем, что следующее определение замыкания равносильно тому, которое было дано ранее: По сравнению со старым определением появилось два ограничения, нужно убедится в том, что они не существены. Сначала рассмотрим
Второе ограничение — можно наложить по той причине, что элементы и так входят в замыкание благодаря левой части объединения.В соответствии с этим определением, замыкание множества — это, кроме всех элементов , все такие что какое-то из максимальных по мощности независимых подмножеств нельзя дополнить -ом, оставив это множество независимым. Определение покрытия отличается только квантором — вместо "какое-то" нужно поставить "любое".Учитывая, что описывает непустое множество таких (по определению ранга), будет верным следствие: |
Теорема: |
Покрытие обладает следующими свойствами:
|
Доказательство: |
Необходимое условие. Пусть полумодулярность ранговой функции мы имеем: будет функцией покрытия матроида с ранговой функцией . Покажем, что . Пусть и . Предположим, что не принадлежит . Тогда поЭто показывает, что .Заметим, что эквивалентно таким выражениям: и . Следовательното есть, .Достаточное условие. Пусть функция удовлетворяет свойствам и определена, как:Сперва посмотрим на следующее:
Действительно, если , тогда , по определению независимого множества. С другой стороны, . Кроме того, если , тогда по определению независимого множества получаем, что . Если , тогда . Предположим, что , т.е. . Мы знаем, что , так как . Таким образом по 3 свойству доказывается (для ), .Теперь покажем, что 3-ю аксиому матроидов, допустим, что , и . Пусть и . Предположим, что , т.е. , и так по (1) применяется к , . Поэтому, и . Таким образом (как и ) и поэтому, (1) применяется к и к . {---} матроид. Очевидно, . Для начала покажем, что закрытое множество под полученным подмножеством, Пусть и . Мы видим, что . Предположим наоборот, что . Тогда по второму свойству . Следовательно, , что противоречит условию, что . Для того чтобы проверитьТаким образом является матроидом. Теперь покажем, что . Выберем такое множество , чтобы увидеть, что , пусть будет базой (в ). Тогда используя (1), мы получаем: |
Закрытые множества
Определение: |
Множество | называется закрытым (англ. closed set, flat), если Класс закрытых множеств обозначается
Теорема: |
Закрытые множества обладают следующими свойствами:
|
См. также
Источники информации
- Асанов М. О., Баранский В. А., Расин В. В. — Дискретная математика: Графы, матроиды, алгоритмы. ISBN 978-5-8114-1068-2
- courses.engr.illinois.edu — Lecture 14, course CS 598CSC: Combinatorial optimization