Оператор замыкания для матроидов — различия между версиями
(Альтернативное определение оператора замыкания) |
(Дополнительное свойство замыкания) |
||
Строка 32: | Строка 32: | ||
# <tex>A \subseteq B \Rightarrow \langle A \rangle \subseteq \langle B \rangle</tex> | # <tex>A \subseteq B \Rightarrow \langle A \rangle \subseteq \langle B \rangle</tex> | ||
# <tex>q \notin \langle A \rangle,\; q \in \langle A \cup p \rangle \Rightarrow p \in \langle A \cup q \rangle</tex> | # <tex>q \notin \langle A \rangle,\; q \in \langle A \cup p \rangle \Rightarrow p \in \langle A \cup q \rangle</tex> | ||
+ | # <tex>e \in \langle A \rangle \Rightarrow \langle A \cup e \rangle = \langle A \rangle</tex> | ||
# <tex>\langle \langle A \rangle \rangle = \langle A \rangle </tex> | # <tex>\langle \langle A \rangle \rangle = \langle A \rangle </tex> | ||
|proof = | |proof = | ||
− | # Положим <tex>x \in \langle A \rangle.</tex> В соответствии с определением оператора замыкания есть 2 случая: | + | # Положим <tex>x \in \langle A \rangle.</tex> В соответствии с первым определением оператора замыкания есть 2 случая: |
#* <tex> x \in A. </tex> Тогда <tex> x \in B </tex>, и следовательно <tex> x \in \langle B \rangle. </tex> | #* <tex> x \in A. </tex> Тогда <tex> x \in B </tex>, и следовательно <tex> x \in \langle B \rangle. </tex> | ||
#* <tex>\exists H \subseteq A :\ H \in I,\ H \cup x \notin I.</tex> Для такого <tex> H </tex> также верно <tex>H \subseteq B,</tex> потому <tex>x \in \langle B \rangle.</tex> | #* <tex>\exists H \subseteq A :\ H \in I,\ H \cup x \notin I.</tex> Для такого <tex> H </tex> также верно <tex>H \subseteq B,</tex> потому <tex>x \in \langle B \rangle.</tex> | ||
Строка 44: | Строка 45: | ||
#*: <tex> H' \cup q \in I </tex>, в противном случае в силу <tex> H' \in I </tex> было бы <tex> q \in \langle A \rangle. </tex> | #*: <tex> H' \cup q \in I </tex>, в противном случае в силу <tex> H' \in I </tex> было бы <tex> q \in \langle A \rangle. </tex> | ||
#*: Как видим, множество <tex> H' \cup q </tex> подходит под определение <tex> p \in \langle A \cup q \rangle. </tex> | #*: Как видим, множество <tex> H' \cup q </tex> подходит под определение <tex> p \in \langle A \cup q \rangle. </tex> | ||
− | # | + | # По первому свойству очевидно, что <tex>\langle A \rangle \subseteq \langle A \cup e \rangle</tex>. Докажем обратное: <tex>\langle A \cup e \rangle \subseteq \langle A \rangle</tex>.<br>Воспользуемся вторым определением оператора замыкания. Рассмотрим <tex>f \in \langle A \cup e \rangle</tex>. По [[Ранговая_функция,_полумодулярность|полумодулярности ранговой функции]] имеем: <br><tex>r(A \cup e) + r(A \cup f) \geqslant r(A \cup e \cup f) + r((A \cup e) \cap (A \cup f)) \geqslant r(A \cup e \cup f) + r(A)</tex>.<br>Но <tex>r(A \cup e) = r(A)</tex> (так как <tex>e \in \langle A \rangle</tex>), значит, <tex>r(A \cup f) \geqslant r(A \cup e \cup f)</tex>, что в свою очередь влечет <tex>r(A \cup f) = r(A \cup e \cup f)</tex>.<br>Но так как <tex>f \in \langle A \cup e \rangle</tex> и <tex>e \in \langle A \rangle</tex>, то имеем <tex>r(A) = r(A \cup e) = r(A \cup e \cup f) = r(A \cup f)</tex>.<br>Следовательно, по определению, <tex>f \in \langle A \rangle</tex>. <br>В силу произвольности <tex>f: \langle A \cup e \rangle \subseteq \langle A \rangle</tex>. |
+ | # Следует из третьего свойства: <tex>\forall e \in \langle A \rangle : \langle A \cup e \rangle = \langle A \rangle</tex>, а значит, <tex>\langle \langle A \rangle \rangle = \langle A \cup \langle A \rangle \rangle = \langle A \cup e_1 \cup e_2 \cup e_3 \cup ... \rangle = \langle A \rangle</tex> (где <tex>e_1, e_2, ...\in \langle A \rangle</tex>) | ||
}} | }} | ||
Версия 17:19, 16 июня 2015
Определение: |
Пусть матроид. Тогда замыкание (англ. closure) множества — это множество такое, что | —
Другими словами, замыкание множества
— это все элементы из а также такие которые при добавлении к некоторым независимым подмножествам не оставляют их независимыми.
Лемма: |
Пусть ранг. — матроид, . Тогда где — |
Доказательство: |
Пусть существуют множества 3-ей аксиоме Так как — максимальное независимое множество из , то то есть Согласно определению замыкания возьмём максимальное по мощности множество Поскольку то по аксиоме замены существует Если Тогда по то но в силу (противоречие с максимальностью множества ). Если то (противоречит выбору множества ). |
Определение: |
Пусть матроид. Тогда замыкание (англ. closure) множества — это множество такое, что , где - ранговая функция | —
Лемма: |
Данное определение эквивалентно предыдущему |
Доказательство: |
Пусть
|
Теорема: |
Оператор замыкания для матроидов обладает следующими свойствами:
|
Доказательство: |
|
Смотри также
Источники информации
- Асанов М. О., Баранский В. А., Расин В. В. — Дискретная математика: Графы, матроиды, алгоритмы. ISBN 978-5-8114-1068-2
- Wikipedia — Matroid
- Википедия — Матроид
- sensagent.com — Matroid