Упорядоченное множество — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(predecessor)
Строка 88: Строка 88:
 
  '''T''' predecessor(Set<T> s, T elem):
 
  '''T''' predecessor(Set<T> s, T elem):
 
     '''int''' i = binSearch(s.elements, elem)
 
     '''int''' i = binSearch(s.elements, elem)
     '''if''' s.elements[i] == elem '''and''' i != 0          <font color=green>// Элемент, предшествующий первому, не существует.</font color=green>
+
     '''if''' s.elements[i] == elem '''and''' i > 0          <font color=green>// Элемент, предшествующий первому, не существует.</font color=green>
 
         '''return''' s.elements[i - 1]
 
         '''return''' s.elements[i - 1]
 
     '''else'''
 
     '''else'''
Строка 100: Строка 100:
 
<code>
 
<code>
 
  '''T''' successor(Set<T> s, T elem):
 
  '''T''' successor(Set<T> s, T elem):
     '''if''' s.elements[0] <= elem '''&&''' s.elements[s.n] > elem        <font color=green>// Если элемент ''elem'' существует и не равен максимальному,</font color=green>
+
     '''int''' i = binSearch(s.elements, elem)
        '''int''' i = binSearch(s.elements, elem)                    <font color=green>// то ищем индекс элемента ''elem''</font color=green>
+
    '''if''' s.elements[i] == elem '''and''' i < s.n - 1          <font color=green>// Элемент, следующий за последним, не существует.</font color=green>
         '''return''' s.elements[i + 1]                               <font color=green>// и выводим следующий за ним элемент.</font color=green>
+
         '''return''' s.elements[i + 1]
     '''else'''                                                       <font color=green>// В противном случае</font color=green>
+
     '''else'''
         '''return''' ''null''                                           <font color=green>// возвращаем ''null''.</font color=green>
+
         '''return''' ''null''
 
</code>
 
</code>
 
Время выполнения {{---}} <tex>O(\log n)</tex>.
 
Время выполнения {{---}} <tex>O(\log n)</tex>.

Версия 23:47, 30 июня 2015

Упорядоченное множество (англ. ordered set) представляет собой коллекцию элементов, каждому из которых присваивается определенный ключ, отвечающий за порядок этого элемента в множестве. Бинарное отношение на упорядоченном множестве является отношением порядка.

Вполне упорядоченным множеством, которое явяется важнейшим частным случаем, называется упорядоченное множество, каждое непустое подмножество которого содержит минимальный элемент.

Операции над упорядоченным множеством

Над упорядоченным множеством [math]set[/math] заданы следующие операции:

  • [math]\mathrm {insert(set, elem)}[/math] — добавляет заданный элемент [math]elem[/math] в подходящее место множества [math]set[/math] (сохраняя свойство упорядоченности),
  • [math]\mathrm {delete(set, elem)}[/math] — удаляет элемент [math]elem[/math] (сохраняя свойство упорядоченности),
  • [math]\mathrm {search(set, elem)}[/math] — получает на вход искомое значение элемента [math]elem[/math] и возвращает [math]true[/math] при наличии элемента в множестве или [math]false[/math] в противном случае,
  • [math]\mathrm {minimum(set)}[/math] — возвращает минимальный элемент множества [math]set[/math],
  • [math]\mathrm {maximum(set)}[/math] — возвращает максимальный элемент множества [math]set[/math],
  • [math]\mathrm {predecessor(set, elem)}[/math] — возвращает элемент, стоящий перед элементом [math]elem[/math] множества [math]set[/math].
  • [math]\mathrm {successor(set, elem)}[/math] — возвращает элемент, стоящий после элемента [math]elem[/math] множества [math]set[/math].

Наивная реализация на массиве

Упорядоченное множество [math]s[/math], содержащее [math]n[/math] элементов, можно реализовать с помощью отсортированного массива [math]elements[0..n-1][/math].

Рассмотрим реализацию на примере отсортированного по возрастанию целочисленного массива.

struct Set<T>:
  int n                            // количество элементов множества
  T[n] elements                    // массив элементов множества типа T

insert

func insert(Set<T> s, T elem):
    s.n = s.n + 1                                    // Увеличиваем количество элементов множества на единицу,
                                                     // увеличиваем размер массива с элементами множества на единицу.
    s.elements[s.n - 1] = elem                       // Вставляем elem в конец массива
    int i = s.n - 1
    while s.elements[i] < s.elements[i - 1]          // Сортируем массив,
        swap(s.elements[i], s.elements[i - 1])       // пока elem не окажется в нужном месте.

Время выполнения — [math]O(n)[/math].

delete

func delete(Set<T> s, T elem):
    int i = 0                                         // Устанавливаем счетчик на первый элемент.
    while i < s.n and s.elements[i] != elem           // Ищем индекс элемента elem.
        i++
    if i != s.n                                       // Если элемент найден, то
        for j = i to s.n - 2                          // сдвигаем все элементы массива, большие elem,
            s.elements[j] = s.elements[j + 1]         // на одну позицию влево (elem удаляется).
        s.n = s.n - 1                                 // Уменьшаем число элементов массива на единицу.

Время выполнения — [math]O(n)[/math].

search

Для нахождения результата используем бинарный поиск.

bool search(Set<T> s, T elem):
    int i = binSearch(s.elements, elem)
    if s.elements[i] == elem                           // Сравниваем найденное значение с искомым...
        return true
    else
        return false

Время выполнения — [math]O(\log n)[/math].

minimum

Первый элемент множества минимальный, так как массив отсортирован по возрастанию.

T minimum(Set<T> s):
    T min = s.elements[0]
    return min

Время выполнения — [math]O(1)[/math].

maximum

Выполняется аналогично операции [math]\mathrm {minimum(set)}[/math].

T maximum(Set<T> s):
    T max = s.elements[s.n - 1]
    return max

Время выполнения — [math]O(1)[/math].

predecessor

Выполняется аналогично операции [math]\mathrm {search(set, elem)}[/math].

T predecessor(Set<T> s, T elem):
    int i = binSearch(s.elements, elem)
    if s.elements[i] == elem and i > 0           // Элемент, предшествующий первому, не существует.
        return s.elements[i - 1]
    else
        return null

Время выполнения — [math]O(\log n)[/math].

successor

Выполняется аналогично операции [math]\mathrm {search(set, elem)}[/math].

T successor(Set<T> s, T elem):
    int i = binSearch(s.elements, elem)
    if s.elements[i] == elem and i < s.n - 1           // Элемент, следующий за последним, не существует.
        return s.elements[i + 1]
    else
        return null

Время выполнения — [math]O(\log n)[/math].

Замечания

  • В случае, когда упорядоченность элементов коллекции не важна, возможно использование хешей.
  • Если задан массив с повторяющимися элементами, то в операциях [math]\mathrm {predecessor(set, elem)}[/math] и [math]\mathrm {successor(set, elem)}[/math] следует использовать левосторонний и правосторонний бинарный поиск соответственно.

Примеры

  • Пустое множество [math] \varnothing [/math],
  • множество натуральных чисел [math] \mathbb N [/math],
  • множество целых чисел [math] \mathbb Z [/math],
  • строки, отсортированные в лексикографическом порядке.

Источники информации

  • Кормен, Т., Лейзерсон, Ч., Ривест, Р., Алгоритмы: построение и анализ = Introduction to Algorithms / — 1-е изд. — Пер. с англ под ред. А. Шеня. — М.: МЦНМО, 2002.—960 с. — ISBN 5-900916-37-5
  • Александров П. С. Введение в теорию множеств и общую топологию. — М.: Наука, 1977. — 368 с.
  • Н. К. Верещагин, А. Шень. Часть 1. Начала теории множеств // Лекции по математической логике и теории алгоритмов. — 2-е изд., испр. — М.: МЦНМО, 2002. — 128 с.
  • Википедия — Упорядоченное множество