Типы дифференциальных уравнений — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 3: Строка 3:
 
Решение:
 
Решение:
 
<tex>(1) \:\: \Leftrightarrow \:\: M(x)dx = -N(y)dy</tex> далее интегрируем правую и левую части
 
<tex>(1) \:\: \Leftrightarrow \:\: M(x)dx = -N(y)dy</tex> далее интегрируем правую и левую части
 +
==Уравнение с разделяемыми переменными==
 +
{{Определение|definition= уравнение вида <tex>M_{1}(x)N_{1}(y)dx + M_{2}(x)N_{2}(y)dy = 0 \:\: (2)</tex> называется уравнением с разделяемыми переменными}}
 +
Решение: (2) разделим на <tex>N_{1}(y)M_{2}(x) \neq 0</tex> и оно сведется к (1). в случае = 0 могут существовать осбые решения.

Версия 15:43, 17 сентября 2015

Уравнение с разделенными переменными

Определение:
уравнение вида [math]M(x)dx + N(y)dy = 0 \:\: (1)[/math] называется уравнением с разделенными переменными

Решение: [math](1) \:\: \Leftrightarrow \:\: M(x)dx = -N(y)dy[/math] далее интегрируем правую и левую части

Уравнение с разделяемыми переменными

Определение:
уравнение вида [math]M_{1}(x)N_{1}(y)dx + M_{2}(x)N_{2}(y)dy = 0 \:\: (2)[/math] называется уравнением с разделяемыми переменными

Решение: (2) разделим на [math]N_{1}(y)M_{2}(x) \neq 0[/math] и оно сведется к (1). в случае = 0 могут существовать осбые решения.