Типы дифференциальных уравнений — различия между версиями
(→Уравнение в полных дифференциалах) |
(→Уравнение в полных дифференциалах) |
||
| Строка 100: | Строка 100: | ||
т.к. <tex>du(x, y) = 0 \Leftrightarrow u(x, y) = C \: -</tex> общий интеграл. | т.к. <tex>du(x, y) = 0 \Leftrightarrow u(x, y) = C \: -</tex> общий интеграл. | ||
{{Теорема|statement = Пусть <tex>M(x, y), N(x, y) \in C(G)</tex>, где G - односвязная область, и <tex>\frac{\partial M(x,y)}{\partial y}, \: \frac{\partial N(x, y)}{\partial x} \in C(G)</tex>; <br> Тогда <tex>Mdx + Ndy = du \: \Leftrightarrow \frac{\partial M(x, y)}{\partial y} \equiv \frac{\partial n(x, y)}{\partial x} </tex>| proof = сами доказывайте.}} | {{Теорема|statement = Пусть <tex>M(x, y), N(x, y) \in C(G)</tex>, где G - односвязная область, и <tex>\frac{\partial M(x,y)}{\partial y}, \: \frac{\partial N(x, y)}{\partial x} \in C(G)</tex>; <br> Тогда <tex>Mdx + Ndy = du \: \Leftrightarrow \frac{\partial M(x, y)}{\partial y} \equiv \frac{\partial n(x, y)}{\partial x} </tex>| proof = сами доказывайте.}} | ||
| + | <b>Решение:</b> <tex>u(x, y) = \int_{x_{0}}^{x}M(x, y)dx + \int_{y_{0}}^{y}N(x_{0}, y)dy = C \: - </tex> Общее решение. | ||
==Приводящееся уравнение к общим дифференциалам== | ==Приводящееся уравнение к общим дифференциалам== | ||
Версия 19:31, 18 сентября 2015
Содержание
Уравнение с разделенными переменными
| Определение: |
| уравнение вида называется уравнением с разделенными переменными |
Решение: далее интегрируем правую и левую части
Уравнение с разделяемыми переменными
| Определение: |
| уравнение вида называется уравнением с разделяемыми переменными |
Решение: (2) разделим на и оно сведется к (1). в случае = 0 могут существовать осбые решения.
Однородные уравнения
| Определение: |
| уравнение вида , где M и N - однородные функции одного измерения, называется однородным уравнением |
| Определение: |
| однородная функция измерения n |
Решение: произвести замену
| Определение: |
| - один из видов однородного уравнения. |
Уравнения приводящиеся к однородным
| Определение: |
| уравнение вида называется уравнением приводящимся к однородному |
Решение:
1)
Тогда получаем однородное уравнение.
2) пусть
а где доказательство?
Линейное уравнение первого порядка
| Определение: |
| уравнение вида называется линейным уравнением порядка |
| Определение: |
| Если , то уравнение называется однородным линейным уравнением порядка |
Способ решения методом Бернулли
Пусть , тогда:
, назовем это уравнение
Пусть такого, что:
Тогда:
. Домножим на . Отсюда получаем:
Пусть . Тогда из получаем:
. Тогда
Способ решения методом Лагранжа
Рассмотрим:
Рассмотрим общее однородное(O.O) и общее неоднородное решение(O.H): (из док-ва Бернулли)
Пусть:
Уравнение в полных дифференциалах
| Определение: |
| Уравнение вида: называется уравнением в полных дифференциалах, если |
т.к. общий интеграл.
| Теорема: |
Пусть , где G - односвязная область, и ; Тогда |
| Доказательство: |
| сами доказывайте. |
Решение: Общее решение.