Алгоритм Борувки — различия между версиями
Novik (обсуждение | вклад) м (→Пример) |
Novik (обсуждение | вклад) м (→Описание алгоритма) |
||
Строка 3: | Строка 3: | ||
==Описание алгоритма== | ==Описание алгоритма== | ||
+ | |||
+ | Алгоритм состоит из нескольких шагов: | ||
+ | |||
# Изначально каждая вершина графа <tex> G </tex >{{---}} тривиальное дерево, а ребра не принадлежат никакому дереву. | # Изначально каждая вершина графа <tex> G </tex >{{---}} тривиальное дерево, а ребра не принадлежат никакому дереву. | ||
# Для каждого дерева <tex> T </tex> найдем минимальное инцидентное ему ребро. Добавим все такие ребра. | # Для каждого дерева <tex> T </tex> найдем минимальное инцидентное ему ребро. Добавим все такие ребра. |
Версия 19:47, 11 октября 2015
Алгоритм Борувки (англ. Borůvka's algorithm) — алгоритм поиска минимального остовного дерева во взвешенном неориентированном связном графе. Впервые был опубликован в 1926 году Отакаром Борувкой.
Содержание
Описание алгоритма
Алгоритм состоит из нескольких шагов:
- Изначально каждая вершина графа — тривиальное дерево, а ребра не принадлежат никакому дереву.
- Для каждого дерева найдем минимальное инцидентное ему ребро. Добавим все такие ребра.
- Повторяем шаг пока в графе не останется только одно дерево .
Данный алгоритм может работать неправильно, если в графе есть ребра равные по весу. Например, полный граф из трех вершин, вес каждого ребра равен один. В могут быть добавлены все три ребра. Избежать эту проблему можно, например, выбирая в первом пункте среди ребер, равных по весу, ребро с наименьшим номером.
Доказательство корректности
Теорема: |
Алгоритм Борувки строит MST |
Доказательство: |
Очевидно, что в результате работы алгоритма получается дерево. Пусть — минимальное остовное дерево графа , а — дерево полученное после работы алгоритма.Покажем, что .Предположим обратное Понятно, что в момент, когда ребро . Пусть ребро — первое окрашенное ребро дерева , не принадлежащее дереву . Пусть — путь, соединяющий в дереве вершины ребра . красили, какое-то ребро (назовем его ) не было покрашено. По алгоритму . Однако тогда — остовное дерево веса не превышающего вес дерева . Получили противоречение. Следовательно . |
Реализация
У вершины есть поле
— компонента связности, которой принадлежит эта вершина.
//— исходный граф // — весовая функция function while for Component // Component — множество компонент связности в // для каждой компоненты связности вес минимального ребра = // разбиваем граф на компоненты связности обычным dfs-ом for if if if for Component // добавляем ребро если его не было в return |
Пример
Асимптотика
Внешний цикл повторяется
раз, так как количество компонент связности каждый раз уменьшается как минимум в двое(потому что в худшем случае будут объединятся пары компонент) и изначально равно количеству вершин. Что же касается внутреннего цикла, то он выполняется за , где — количество рёбер в исходном графе. Следовательно конечное время работы алгоритма .