Алгоритм Борувки — различия между версиями
Novik (обсуждение | вклад) м (→Асимптотика) |
Novik (обсуждение | вклад) м (→Асимптотика) |
||
Строка 69: | Строка 69: | ||
==Асимптотика== | ==Асимптотика== | ||
− | На <tex> i </tex>-ой итерации внешнего цикла каждая компонента состоит как минимум из двух компонент из <tex> (i - 1) </tex>-й итерации. Значит на каждой итерации число компонент уменьшается как минимум в <tex> 2 </tex> раза. | + | На <tex> i </tex>-ой итерации внешнего цикла каждая компонента состоит как минимум из двух компонент из <tex> (i - 1) </tex>-й итерации. Значит, на каждой итерации число компонент уменьшается как минимум в <tex> 2 </tex> раза. Тогда внешний цикл повторяется <tex>O(\log{V})</tex> раз, так как количество компонент изначально равно количеству вершин. Что же касается внутреннего цикла, то он выполняется за <tex>O(E)</tex>, где <tex>E</tex> {{---}} количество рёбер в исходном графе. Следовательно конечное время работы алгоритма <tex>O(E\log{V})</tex>. |
==См. также== | ==См. также== |
Версия 23:22, 12 октября 2015
Алгоритм Борувки (англ. Borůvka's algorithm) — алгоритм поиска минимального остовного дерева во взвешенном неориентированном связном графе. Впервые был опубликован в 1926 году Отакаром Борувкой.
Содержание
Описание алгоритма
Алгоритм состоит из нескольких шагов:
- Изначально каждая вершина графа — тривиальное дерево, а ребра не принадлежат никакому дереву.
- Для каждого дерева найдем минимальное инцидентное ему ребро. Добавим все такие ребра.
- Повторяем шаг пока в графе не останется только одно дерево .
Данный алгоритм может работать неправильно, если в графе есть ребра равные по весу. Например, полный граф из трех вершин, вес каждого ребра равен один. В могут быть добавлены все три ребра. Избежать эту проблему можно, например, выбирая в первом пункте среди ребер, равных по весу, ребро с наименьшим номером.
Доказательство корректности
Теорема: |
Алгоритм Борувки строит MST. |
Доказательство: |
Очевидно, что в результате работы алгоритма получается дерево. Пусть — минимальное остовное дерево графа , а — дерево полученное после работы алгоритма.Покажем, что .Предположим обратное Понятно, что в момент, когда ребро . Пусть ребро — первое добавленное ребро дерева , не принадлежащее дереву . Пусть — путь, соединяющий в дереве вершины ребра . добавляли, какое-то ребро (назовем его ) не было добавлено. По алгоритму . Однако тогда — остовное дерево веса не превышающего вес дерева . Получили противоречение. Следовательно . |
Реализация
У вершины есть поле
— компонента связности, которой принадлежит эта вершина.
//— исходный граф // — весовая функция function while for Component // Component — множество компонент связности в . Для // каждой компоненты связности вес минимального ребра = . // Разбиваем граф на компоненты связности обычным dfs-ом. for if if if for Component // добавляем ребро, если его не было в return |
Пример
Асимптотика
На
-ой итерации внешнего цикла каждая компонента состоит как минимум из двух компонент из -й итерации. Значит, на каждой итерации число компонент уменьшается как минимум в раза. Тогда внешний цикл повторяется раз, так как количество компонент изначально равно количеству вершин. Что же касается внутреннего цикла, то он выполняется за , где — количество рёбер в исходном графе. Следовательно конечное время работы алгоритма .