Матрица смежности графа — различия между версиями
(→Пример) |
|||
Строка 1: | Строка 1: | ||
__NOTOC__ | __NOTOC__ | ||
{{Определение | {{Определение | ||
− | |definition ='''Матрицей смежности''' ''(англ. Adjacency matrix)'' <tex>A=||\alpha_{i,j}||</tex> не взвешенного графа <tex>G(V,E)</tex> называется матрица <tex>A_{[V\times{}V]}</tex>, в которой <tex>\alpha_{i,j}</tex> — количество рёбер, соединяющих вершины <tex>v_i</tex> и <tex>v_j</tex>, причём при <tex>i=j</tex> каждую петлю учитываем дважды, если граф не является ориентированным, и один раз, если граф ориентирован. | + | |definition ='''Матрицей смежности''' ''(англ. Adjacency matrix)'' <tex>A=||\alpha_{i,j}||</tex> не взвешенного графа <tex>G=(V,E)</tex> называется матрица <tex>A_{[V\times{}V]}</tex>, в которой <tex>\alpha_{i,j}</tex> — количество рёбер, соединяющих вершины <tex>v_i</tex> и <tex>v_j</tex>, причём при <tex>i=j</tex> каждую петлю учитываем дважды, если граф не является ориентированным, и один раз, если граф ориентирован. |
}} | }} | ||
{{Определение | {{Определение | ||
− | |definition ='''Матрицей смежности''' ''(англ. Adjacency matrix)'' <tex>A=||\alpha_{i,j}||</tex> взвешенного графа <tex>G(V,E)</tex> называется матрица <tex>A_{[V\times{}V]}</tex>, в которой <tex>\alpha_{i,j}</tex> — вес ребра, соединяющего вершины <tex>v_i</tex> и <tex>v_j</tex>. | + | |definition ='''Матрицей смежности''' ''(англ. Adjacency matrix)'' <tex>A=||\alpha_{i,j}||</tex> взвешенного графа <tex>G=(V,E)</tex> называется матрица <tex>A_{[V\times{}V]}</tex>, в которой <tex>\alpha_{i,j}</tex> — вес ребра, соединяющего вершины <tex>v_i</tex> и <tex>v_j</tex>. |
}} | }} | ||
Версия 20:20, 5 ноября 2015
Определение: |
Матрицей смежности (англ. Adjacency matrix) | не взвешенного графа называется матрица , в которой — количество рёбер, соединяющих вершины и , причём при каждую петлю учитываем дважды, если граф не является ориентированным, и один раз, если граф ориентирован.
Определение: |
Матрицей смежности (англ. Adjacency matrix) | взвешенного графа называется матрица , в которой — вес ребра, соединяющего вершины и .
Пример
Взвешенность графа | Вид графа | Матрица смежности |
---|---|---|
Не взвешенный граф | ||
Взвешенный граф |
Примечание
Матрица смежности занимает
памяти, поиск ребра в ней происходит за . Из этого следует, что ее эффективно использовать, если количество ребер больше чем количество вершин и когда в алгоритме требуется проверять или искать между двумя вершинами ребро.Свойства
Утверждение: |
Для графов без петель и кратных рёбер матрица смежности бинарна (состоит из нулей и единиц). |
Утверждение: |
Для графов без петель и кратных рёбер главная диагональ матрицы смежности целиком состоит из нулей. |
Случай ориентированного графа
Утверждение: |
Сумма элементов -й строки равна , то есть .
Аналогично сумма элементов -го стоблца равна , то есть . |
Случай неориентированного графа
Утверждение: |
Для неориентированных графов матрица смежности является симметричной. |
Сумма элементов | -й строки равна , то есть . Вследствие симметричности суммы элементов -й строки и -го столбца равны.
Связь степени матрицы смежности и количества путей
Теорема: |
Пусть матрица смежности графа без петель и , где . Тогда равно количеству путей длины . — |
Доказательство: |
Утверждение очевидно при . Пусть , и утверждение верно для . Тогда , где равно количеству путей длины . Следовательно, |
См. также
Источники информации
- Харари Фрэнк Теория графов Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6
- Асанов М. О., Баранский В. А., Расин В. В. Дискретная математика: графы, матроиды, алгоритмы — НИЦ РХД, 2001. — 288 с. — ISBN 5-93972-076-5