Матрица смежности графа — различия между версиями
(→Пример) |
|||
Строка 8: | Строка 8: | ||
}} | }} | ||
− | == | + | ====Примеры матриц смежности:==== |
{| border="1" cellpadding="5" cellspacing="0" style="text-align:center" | {| border="1" cellpadding="5" cellspacing="0" style="text-align:center" | ||
!style="background:#f2f2f2"|Взвешенность графа | !style="background:#f2f2f2"|Взвешенность графа | ||
Строка 34: | Строка 34: | ||
\end{pmatrix}</tex> | \end{pmatrix}</tex> | ||
|} | |} | ||
+ | |||
==Примечание== | ==Примечание== | ||
Матрица смежности занимает <tex>O(|V|^2)</tex> памяти, поиск ребра в ней происходит за <tex>O(1)</tex>. Из этого следует, что ее эффективно использовать, если количество ребер больше чем количество вершин и когда в алгоритме требуется проверять или искать между двумя вершинами ребро. | Матрица смежности занимает <tex>O(|V|^2)</tex> памяти, поиск ребра в ней происходит за <tex>O(1)</tex>. Из этого следует, что ее эффективно использовать, если количество ребер больше чем количество вершин и когда в алгоритме требуется проверять или искать между двумя вершинами ребро. |
Версия 20:21, 5 ноября 2015
Определение: |
Матрицей смежности (англ. Adjacency matrix) | не взвешенного графа называется матрица , в которой — количество рёбер, соединяющих вершины и , причём при каждую петлю учитываем дважды, если граф не является ориентированным, и один раз, если граф ориентирован.
Определение: |
Матрицей смежности (англ. Adjacency matrix) | взвешенного графа называется матрица , в которой — вес ребра, соединяющего вершины и .
Примеры матриц смежности:
Взвешенность графа | Вид графа | Матрица смежности |
---|---|---|
Не взвешенный граф | ||
Взвешенный граф |
Примечание
Матрица смежности занимает
памяти, поиск ребра в ней происходит за . Из этого следует, что ее эффективно использовать, если количество ребер больше чем количество вершин и когда в алгоритме требуется проверять или искать между двумя вершинами ребро.Свойства
Утверждение: |
Для графов без петель и кратных рёбер матрица смежности бинарна (состоит из нулей и единиц). |
Утверждение: |
Для графов без петель и кратных рёбер главная диагональ матрицы смежности целиком состоит из нулей. |
Случай ориентированного графа
Утверждение: |
Сумма элементов -й строки равна , то есть .
Аналогично сумма элементов -го стоблца равна , то есть . |
Случай неориентированного графа
Утверждение: |
Для неориентированных графов матрица смежности является симметричной. |
Сумма элементов | -й строки равна , то есть . Вследствие симметричности суммы элементов -й строки и -го столбца равны.
Связь степени матрицы смежности и количества путей
Теорема: |
Пусть матрица смежности графа без петель и , где . Тогда равно количеству путей длины . — |
Доказательство: |
Утверждение очевидно при . Пусть , и утверждение верно для . Тогда , где равно количеству путей длины . Следовательно, |
См. также
Источники информации
- Харари Фрэнк Теория графов Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6
- Асанов М. О., Баранский В. А., Расин В. В. Дискретная математика: графы, матроиды, алгоритмы — НИЦ РХД, 2001. — 288 с. — ISBN 5-93972-076-5