Матрица смежности графа — различия между версиями
(→Свойство для ориентированного графа) |
(→Свойство для неориентированного графа) |
||
Строка 58: | Строка 58: | ||
}} | }} | ||
− | + | ||
{{Теорема | {{Теорема | ||
− | |statement=Пусть <tex>A_{[V\times{}V]}=\alpha_{i,j}</tex> — [[Матрица смежности графа|матрица смежности]] [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|графа]] <tex>G(V,E)</tex> без петель и <tex>A^l=\gamma_{i,j}</tex>, где <tex>l\in\mathbb{N}</tex>. Тогда <tex>\gamma_{i,j}</tex> равно количеству путей <tex>v_i\leadsto{}v_j</tex> длины <tex>l</tex>. | + | |statement= Пусть <tex>A_{[V\times{}V]}=\alpha_{i,j}</tex> — [[Матрица смежности графа|матрица смежности]] [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|ориентированного графа]] <tex>G(V,E)</tex> без петель и <tex>A^l=\gamma_{i,j}</tex>, где <tex>l\in\mathbb{N}</tex>. Тогда <tex>\gamma_{i,j}</tex> равно количеству путей <tex>v_i\leadsto{}v_j</tex> длины <tex>l</tex>. |
|proof=Утверждение очевидно при <tex>l = 1</tex>. Пусть <tex>l > 1</tex>, и утверждение верно для <tex>l - 1</tex>. Тогда <tex>A^{l-1}=\varepsilon_{i,j}</tex>, где <tex>\varepsilon_{i,j}</tex> равно количеству путей <tex>v_i\leadsto{}v_j</tex> длины <tex>l-1</tex>. Следовательно, | |proof=Утверждение очевидно при <tex>l = 1</tex>. Пусть <tex>l > 1</tex>, и утверждение верно для <tex>l - 1</tex>. Тогда <tex>A^{l-1}=\varepsilon_{i,j}</tex>, где <tex>\varepsilon_{i,j}</tex> равно количеству путей <tex>v_i\leadsto{}v_j</tex> длины <tex>l-1</tex>. Следовательно, |
Версия 20:30, 5 ноября 2015
Определение: |
Матрицей смежности (англ. Adjacency matrix) | не взвешенного графа называется матрица , в которой — количество рёбер, соединяющих вершины и , причём при каждую петлю учитываем дважды, если граф не является ориентированным, и один раз, если граф ориентирован.
Определение: |
Матрицей смежности (англ. Adjacency matrix) | взвешенного графа называется матрица , в которой — вес ребра, соединяющего вершины и .
Примеры матриц смежности:
Взвешенность графа | Вид графа | Матрица смежности |
---|---|---|
Не взвешенный граф | ||
Взвешенный граф |
Оценка памяти и времени работы
Матрица смежности занимает
памяти, поиск ребра в ней происходит за .Свойства
Утверждение: |
Для графов без петель и кратных рёбер матрица смежности бинарна (состоит из нулей и единиц). |
Утверждение: |
Для графов без петель и кратных рёбер главная диагональ матрицы смежности целиком состоит из нулей. |
Утверждение: |
У матрицы смежности ориентированного графа сумма элементов -й строки равна , то есть .
Аналогично сумма элементов -го стоблца равна , то есть . |
Свойство для неориентированного графа
Утверждение: |
Для неориентированных графов матрица смежности является симметричной. |
Сумма элементов | -й строки равна , то есть . Вследствие симметричности суммы элементов -й строки и -го столбца равны.
Теорема: |
Пусть матрица смежности ориентированного графа без петель и , где . Тогда равно количеству путей длины . — |
Доказательство: |
Утверждение очевидно при . Пусть , и утверждение верно для . Тогда , где равно количеству путей длины . Следовательно, |
См. также
Источники информации
- Харари Фрэнк Теория графов Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6
- Асанов М. О., Баранский В. А., Расин В. В. Дискретная математика: графы, матроиды, алгоритмы — НИЦ РХД, 2001. — 288 с. — ISBN 5-93972-076-5