Алгоритм Левита — различия между версиями
Lehanyich (обсуждение | вклад) |
Lehanyich (обсуждение | вклад) |
||
Строка 17: | Строка 17: | ||
* <tex>v \in M_2</tex>, то <tex>v</tex> переводится в конец очереди <tex>M_1^{'}</tex>. При этом <tex>d_v \gets d_u + w_{uv}</tex> (производится релаксация ребра <tex>uv</tex>), | * <tex>v \in M_2</tex>, то <tex>v</tex> переводится в конец очереди <tex>M_1^{'}</tex>. При этом <tex>d_v \gets d_u + w_{uv}</tex> (производится релаксация ребра <tex>uv</tex>), | ||
* <tex>v \in M_1</tex>, то происходит релаксация ребра <tex>uv</tex>, | * <tex>v \in M_1</tex>, то происходит релаксация ребра <tex>uv</tex>, | ||
− | * <tex>v \in M_0</tex> | + | * <tex>v \in M_0</tex>. Если при этом <tex>d_v > d_u + w_{uv}</tex>, то происходит релаксация ребра <tex>uv</tex> и вершина <tex>v</tex> помещается в <tex>M_1^{''}</tex>; иначе ничего не делаем. |
В конце шага помещаем вершину <tex>u</tex> в множество <tex>M_0</tex>. | В конце шага помещаем вершину <tex>u</tex> в множество <tex>M_0</tex>. | ||
Строка 64: | Строка 64: | ||
== Сложность == | == Сложность == | ||
− | В плохих случаях алгоритм Левита работает | + | В плохих случаях алгоритм Левита работает за экспоненциальное время. Рассмотрим граф с <tex>3\cdot n</tex> вершинами и такими рёбрами: от вершины <tex>1</tex> до <tex>n</tex> ребро веса <tex>2^n</tex>, цепь <tex>n-1</tex> рёбер через одну вершину (<tex>n</tex>, <tex>n+2</tex> <tex>...</tex> <tex>3 \cdot n</tex>; вес <tex>i</tex>-ого звена <tex>2^{n-i}</tex>), а также цепь рёбер от <tex>1</tex> до <tex>3 \cdot n</tex> (вес каждого звена <tex>0</tex>). Ясно, что кратчайший путь до каждой вершины равен <tex>0</tex>, но в плохом случае алгоритм будет постепенно улучшать расстояние до последней вершины, пересчитывая его огромное число раз, что даёт экспоненциальное время. Однако, на реальных графах алгоритм Левита работает быстрее, чем алгоритм [[Алгоритм Форда-Беллмана|Форда Беллмана]] и не многим уступает алгоритму [[Алгоритм Дейкстры|Дейкстры]]. |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==См. также== | ==См. также== |
Версия 14:04, 8 ноября 2015
Алгоритм Левита (англ. Levit's algorithm) находит расстояние от заданной вершины
до всех остальных. Позволяет работать с ребрами отрицательного веса при отсутствии отрицательных циклов.Алгоритм
Пусть
— текущая длина кратчайшего пути до вершины . Изначально, все элементы , кроме -го равны бесконечности; .Разделим вершины на три множества:
- — вершины, расстояние до которых уже вычислено (возможно, не окончательно),
- очереди: — вершины, расстояние до которых вычисляется. Это множество в свою очередь делится на две
- — основная очередь,
- — срочная очередь;
- — вершины, расстояние до которых еще не вычислено.
Изначально все вершины, кроме
помещаются в множество . Вершина помещается в множество (в любую из очередей).Шаг алгоритма: выбирается вершина
из . Если очередь не пуста, то вершина берется из нее, иначе из . Для каждого ребра возможны три случая:- , то переводится в конец очереди . При этом (производится релаксация ребра ),
- , то происходит релаксация ребра ,
- . Если при этом , то происходит релаксация ребра и вершина помещается в ; иначе ничего не делаем.
В конце шага помещаем вершину
в множество .Алгоритм заканчивает работу, когда множество
становится пустым.Псевдокод
for.push( ) for and .add( ) while and .pop() .pop() for if .push( ) .remove( ) min( ) else if min( ) else if and .push( ) .remove( ) .add( )
Доказательство
Лемма: |
Алгоритм отработает за конечное время |
Доказательство: |
Не теряя общности, будем считать, что граф связен. Тогда алгоритм завершит работу, когда в | окажутся все вершины. Так как в исходном графе нет отрицательных циклов, то для каждой вершины существует кратчайший путь. Тогда расстояние до каждой вершины может уменьшится только конечное число раз и, как следствие, вершина будет переведена из в тоже конечное число раз. С другой стороны, на каждом шаге текущая вершина гарантированно помещается в . Тогда за конечное число шагов все вершины окажутся в .
Лемма: |
В конце работы алгоритма не найдется такое ребро , что его релаксация будет успешной |
Доказательство: |
Предположим обратное. Тогда рассмотрим 2 случая:
|
Из двух предыдущих лемм напрямую следует корректность алгоритма.
Сложность
В плохих случаях алгоритм Левита работает за экспоненциальное время. Рассмотрим граф с Форда Беллмана и не многим уступает алгоритму Дейкстры.
вершинами и такими рёбрами: от вершины до ребро веса , цепь рёбер через одну вершину ( , ; вес -ого звена ), а также цепь рёбер от до (вес каждого звена ). Ясно, что кратчайший путь до каждой вершины равен , но в плохом случае алгоритм будет постепенно улучшать расстояние до последней вершины, пересчитывая его огромное число раз, что даёт экспоненциальное время. Однако, на реальных графах алгоритм Левита работает быстрее, чем алгоритмСм. также
- Алгоритм A*
- Алгоритм Дейкстры
- Алгоритм Джонсона
- Алгоритм Флойда
- Алгоритм Форда-Беллмана
- Обход в ширину
Источники информации
- Википедия — Алгоритм Левита
- MAXimal :: algo :: Алгоритм Левита
- И. В. Романовский, Дискретный анализ, ISBN 5-7940-0138-0; 2008 г., 4 издание, стр. 229-231.