Алгоритм Хаффмана — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 6: Строка 6:
  
 
== Построение кода Хаффмана ==
 
== Построение кода Хаффмана ==
+
[[Файл:Huffman1.png|100px|right|thumb|Обрабатываем b и c]]
 +
[[Файл:Huffman2.png|100px|right|thumb|Получившееся дерево]]
 
В основу алгоритма Хаффмана положена идея: кодировать более коротко те символы, которые встречаются чаще, а те, которые встречаются реже кодировать длиннее. Для построения кода Хаффмана нам необходима таблица частот символов. Рассмотрим пример построения кода на простой строке '''''abacaba'''''<br>
 
В основу алгоритма Хаффмана положена идея: кодировать более коротко те символы, которые встречаются чаще, а те, которые встречаются реже кодировать длиннее. Для построения кода Хаффмана нам необходима таблица частот символов. Рассмотрим пример построения кода на простой строке '''''abacaba'''''<br>
 
{| class="wikitable"
 
{| class="wikitable"
Строка 14: Строка 15:
 
|}
 
|}
 
Следующим шагом будет построение дерева, где вершины - "символы", а пути до них соответствуют их префиксным кодам.   
 
Следующим шагом будет построение дерева, где вершины - "символы", а пути до них соответствуют их префиксным кодам.   
Для этого на каждом шаге будем брать два символа с минимальной частотой вхождения, и объединять их в новые так называемые "символы" с частотой равной сумме частот тех символов, которые мы объединяли.
+
Для этого на каждом шаге будем брать два символа с минимальной частотой вхождения, и объединять их в новые так называемые символы с частотой равной сумме частот тех, которые мы объединяли, а также соединять их рёбрами, образуя таким образом дерево(см. рисунок). Выбирать минимальные два символа будем из всех символов, исключая те, которые мы уже выбирали.  
В примере мы объединим символы b и с в символ bc с частотой 3.
+
В примере мы объединим символы b и с в символ bc с частотой 3. Далее объединим a и bc в символ abc, получив тем самым дерево. Теперь пути от корня (abc) до листьев и есть Коды Хаффмана(каждому ребру соответствует либо 1 либо 0)
[[Файл:Haffman1.jpg]]
+
 
 +
 
 +
{| class="wikitable"
 +
! a || b || c ||
 +
|-
 +
| 0 || 11 || 10 ||
 +
|}
  
Хаффман изобрел жадный алгоритм, позволяющий составить оптимальный префиксный код, который получил название код Хаффмана. Доказательство корректности этого алгоритма основывается на свойстве жадного выбора и оптимальной подструктуре. Вместо того чтобы демонстрировать, что эти свойства выполняются, а затем разрабатывать псевдокод, сначала мы представим псевдокод. Это поможет прояснить, как алгоритм осуществляет жадный выбор. В приведенном ниже псевдокоде предполагается, что <tex>C</tex> — множество, состоящее из <tex>n</tex> символов, и что каждый из символов <tex>c\in C</tex> — объект с определенной частотой <tex>f(c)</tex>. В алгоритме строится дерево <tex>T</tex>, соответствующее оптимальному коду, причем построение идет в восходящем направлении. Процесс построения начинается с множества, состоящего из <tex>|C|</tex> листьев, после чего последовательно выполняется <tex>|C|-1</tex> операций "слияния", в результате которых образуется конечное дерево. Для идентификации двух наименее часто встречающихся объектов, подлежащих слиянию, используется очередь с приоритетами <tex>Q</tex>, ключами в которой являются частоты <tex>f</tex>. В результате слияния двух объектов образуется новый объект, частота появления которого является суммой частот объединенных объектов:
 
<br><br>
 
'''Huffman(<tex>C</tex>)''' <br>
 
<tex>n \gets |C|</tex>  <br>
 
<tex>Q \gets C</tex> <br>
 
'''for''' <tex>i \gets 1</tex> '''to''' <tex>n - 1</tex> <br>
 
:'''do''' Выделить память для узла <tex>z</tex> <br>
 
::left[<tex> z</tex>]<tex> \gets x \gets</tex> Extract_Min(<tex> Q</tex>)<br>
 
::right[<tex>z</tex>]<tex>\gets y \gets </tex> Extract_Min(<tex>Q</tex>) <br>
 
::<tex>f[z] \gets f[x]+f[y]</tex>
 
::Insert(<tex>Q</tex>, <tex>z</tex> ) <br>
 
'''return''' Extract_Min(<tex>Q</tex> ) <tex> \rhd </tex>  Возврат корня дерева <br><br>
 
=== Пример работы алгоритма ===
 
[[Файл:Huffman.jpg]]<br>
 
На каждом этапе показано содержимое очереди, элементы которой рассортированы в порядке возрастания их частот. На каждом шаге работы алгоритма объединяются два объекта (дерева) с самыми низкими частотами. Листья изображены в виде прямоугольников, в каждом из которых указана буква и соответствующая ей частота. Внутренние узлы представлены кругами, содержащими сумму частот дочерних узлов. Ребро, соединяющее внутренний узел с левым дочерним узлом, имеет метку 0, а ребро, соединяющее его с правым дочерним узлом, — метку 1. Слово кода для буквы образуется последовательностью меток на ребрах, соединяющих корень с листом, представляющим эту букву. По скольку данное множество содержит шесть букв, размер исходной очереди равен 6(часть ''а'' рисунка), а для построения дерева требуется пять слияний. Промежуточные этапы изображены в частях ''б-д''. Конечное дерево (''е'') представляет оптимальный префиксный код. Как уже говорилось, слово кода для буквы — это последовательность меток на пути от корня к листу с этой буквой.<br>
 
В строке 2 инициализируется очередь с приоритетами <tex>Q</tex>, состоящая из элементов множества <tex>С</tex>. Цикл '''for''' в строках 3-8 поочередно извлекает по два узла, <tex>x</tex> и <tex>у</tex>, которые характеризуются в очереди наименьшими частотами, и заменяет их в очереди новым узлом, представляющим объединение упомянутых выше элементов. Частота появления <tex>z</tex> вычисляется в строке 7 как сумма частот <tex>x</tex> и <tex>y</tex>. Узел <tex>x</tex> является левым дочерним узлом <tex>z</tex>, а <tex>y</tex> — его правым дочерним узлом. (Этот порядок является произвольным; перестановка левого и правого дочерних узлов приводит к созданию другого кода с той же стоимостью.) После <tex>n - 1</tex> объединений в очереди остается один узел — корень дерева кодов, который возвращается в строке 9.
 
=== Оценка времени работы ===
 
При анализе времени работы алгоритма Хаффмана предполагается, что <tex>Q</tex> реализована как бинарная неубывающая пирамида. Для множества <tex>C</tex>, состоящего из <tex>n</tex> символов, инициализацию очереди <tex>Q</tex> в строке 2 можно выполнить за время <tex>O(n)</tex>. Цикл for в строках 3-8 выполняется ровно <tex>n - 1</tex> раз, и поскольку для каждой операции над пирамидой требуется время<tex>O(lg(n))</tex>, вклад цикла во время работы алгоритма равен <tex>O(n \cdot lg(n))</tex>. Таким образом, полное время работы процедуры Huffman с входным множеством, состоящим из <tex>n</tex> символов, равно <tex>O(n \cdot lg(n))</tex>.
 
  
 
== Корректность алгоритма Хаффмана ==
 
== Корректность алгоритма Хаффмана ==
Строка 65: Строка 54:
 
что противоречит предположению о том, что дерево <tex>T'</tex> представляет оптимальный префиксный код для алфавита <tex>C'</tex>. Таким образом, дерево <tex>T</tex> должно представлять оптимальный префиксный код для алфавита <tex>C</tex>.   
 
что противоречит предположению о том, что дерево <tex>T'</tex> представляет оптимальный префиксный код для алфавита <tex>C'</tex>. Таким образом, дерево <tex>T</tex> должно представлять оптимальный префиксный код для алфавита <tex>C</tex>.   
 
}}
 
}}
 
Лемма 16.3.
 
Доказательство.
 
 
{{Теорема
 
{{Теорема
 
|id=th1
 
|id=th1

Версия 09:49, 19 ноября 2010

Определение

Определение:
Коды или Алгоритм Хаффмана (Huffman codes) — широко распространенный и очень эффективный метод сжатия данных, который, в зависимости от характеристик этих данных, обычно позволяет сэкономить от 20% до 90% объема.

Рассматриваются данные, представляющие собой последовательность символов. В жадном алгоритме Хаффмана используется таблица, содержащая частоты появления тех или иных символов. С помощью этой таблицы определяется оптимальное представление каждого символа в виде бинарной строки.

Построение кода Хаффмана

Обрабатываем b и c
Получившееся дерево

В основу алгоритма Хаффмана положена идея: кодировать более коротко те символы, которые встречаются чаще, а те, которые встречаются реже кодировать длиннее. Для построения кода Хаффмана нам необходима таблица частот символов. Рассмотрим пример построения кода на простой строке abacaba

a b c
4 2 1

Следующим шагом будет построение дерева, где вершины - "символы", а пути до них соответствуют их префиксным кодам. Для этого на каждом шаге будем брать два символа с минимальной частотой вхождения, и объединять их в новые так называемые символы с частотой равной сумме частот тех, которые мы объединяли, а также соединять их рёбрами, образуя таким образом дерево(см. рисунок). Выбирать минимальные два символа будем из всех символов, исключая те, которые мы уже выбирали. В примере мы объединим символы b и с в символ bc с частотой 3. Далее объединим a и bc в символ abc, получив тем самым дерево. Теперь пути от корня (abc) до листьев и есть Коды Хаффмана(каждому ребру соответствует либо 1 либо 0)


a b c
0 11 10


Корректность алгоритма Хаффмана

Чтобы доказать корректность жадного алгоритма Huffman, покажем, что в задаче о построении оптимального префиксного кода проявляются свойства жадного выбора и оптимальной подструктуры. В сформулированной ниже лемме показано соблюдение свойства жадного выбора.

Лемма (1):
Пусть [math]C[/math] — алфавит, каждый символ [math]c \in C[/math] которого встречается с частотой [math]f[c][/math]. Пусть [math]x[/math] и [math]y[/math] — два символа алфавита [math]C[/math] с самыми низкими частотами. Тогда для алфавита [math]C[/math] существует оптимальный префиксный код, кодовые слова символов [math]x[/math] и [math]y[/math] в котором имеют одинаковую длину и отличаются лишь последним битом.
Доказательство:
[math]\triangleright[/math]

Идея доказательства состоит в том, чтобы взять дерево [math]T[/math], представляющее произвольный оптимальный префиксный код, и преобразовать его в дерево, представляющее другой оптимальный префиксный код, в котором символы [math]x[/math] и [math]y[/math] являются листьями с общим родительским узлом, причем в новом дереве эти листья находятся на максимальной глубине. Пусть [math]a[/math] и [math]b[/math] — два символа, представленные листьями с общим родительским узлом, которые находятся на максимальной глубине дерева [math]T[/math]. Предположим без потери общности, что [math]f[a] \le f[b][/math] и [math]f[x] \le f[y][/math]. Поскольку [math]f[x][/math] и [math]f[y][/math] — две самые маленькие частоты (в указанном порядке), [math]f[a][/math] и [math]f[b][/math] — две произвольные частоты, то выполняются соотношения [math]f[x] \le f[a][/math] и [math]f[y] \le f[b][/math]. В результате перестановки в дереве [math]T[/math] листьев [math]a[/math] и [math]x[/math] получается дерево [math]T'[/math], а при последующей перестановке в дереве V листьев [math]b[/math] и [math]y[/math] получается дерево [math]T''[/math]. Разность стоимостей деревьев Т и Т" равна
[math]B(T) - B(T') = \sum_{c \in C} f(c)d_T(C) - \sum_{c \in C} f(c)d_{T'}(C) =[/math]
[math] = (f[a] - f[x])(d_T(a) - d_T(x)) \ge 0[/math],

поскольку величины [math]f[a] - f[x][/math] и [math]d_T(a) - d_T(x)[/math] неотрицательны. Величина [math]f[a] - f[x][/math] неотрицательна, потому что х — лист с минимальной частотой, величина [math]d_T(a) - d_T(x)[/math] неотрицательна, потому что [math]a[/math] — лист на максимальной глубине в дереве [math]T[/math]. Аналогично, перестановка листьев [math]y[/math] и [math]b[/math] не приведет к увеличению стоимости, поэтому величина [math]B(T') - B(T'')[/math] неотрицательна. Таким образом, выполняется неравенство [math]B(T') \le B(T'')[/math], и поскольку [math]T[/math] — оптимальное дерево, то должно также выполняться неравенство [math]B(T'') \le B(T')[/math], откуда следует, что [math]B(T') = B(T'')[/math]. Таким образом, [math]T''[/math] — оптимальное дерево, в котором [math]x[/math] и [math]y[/math] — находящиеся на максимальной глубине дочерние листья одного и того же узла, что и доказывает лемму.
[math]\triangleleft[/math]
Лемма (2):
Пусть дан алфавит [math]C[/math], в котором для каждого символа [math]c \in C[/math] определены частоты [math]f[c][/math]. Пусть [math]x[/math] и [math]y[/math] — два символа из алфавита [math]C[/math] с минимальными частотами. Пусть [math]C'[/math] — алфавит, полученный из алфавита [math]C[/math] путем удаления символов [math]x[/math] и [math]y[/math] и добавления нового символа [math]z[/math], так что [math]C = C — {х,у} \cup {z}[/math]. По определению частоты [math]f[/math] в алфавите [math]C'[/math] совпадают с частотами в алфавите [math]C[/math], за исключением частоты [math]f[z] = f[x] + f[y][/math]. Пусть [math]T'[/math] — произвольное дерево, представляющее оптимальный префиксный код для алфавита [math]C'[/math] Тогда дерево [math]T[/math], полученное из дерева [math]T'[/math] путем замены листа [math]z[/math] внутренним узлом с дочерними элементами [math]x[/math] и [math]y[/math], представляет оптимальный префиксный код для алфавита [math]C[/math].
Доказательство:
[math]\triangleright[/math]

Сначала покажем, что стоимость [math]B(T)[/math] дерева [math]T[/math] можно выразить через стоимость [math]B(T')[/math] дерева [math]T'[/math]. Для каждого символа [math]c \le C - {x,y}[/math] выполняется соотношение [math]d_T(C) = d_{T'}(c)[/math], следовательно, [math]f[c]d_T(C) = f[c]d_{T'}(c)[/math]. Поскольку [math]d_T(x) = d_{T}(y) = d_{t'}(z) + 1[/math], получаем соотношение
[math]f[x]d_T(x) + f[y]d_{T}(y) = (f[x] + f[y])(d_{T'}(z) + 1) = f[z]d_{T'}(z) + (f[x] + f[y])[/math]
из которого следует равенство
[math] B(T) = B(T') + f[x] + f[y] [/math]
ИЛИ
[math] B(T') = B(T) - f[x] - f[y] [/math].
Докажем лемму методом от противного. Предположим, дерево [math] T [/math] не представляет оптимальный префиксный код для алфавита [math] C [/math]. Тогда существует дерево [math] T'' [/math], для которого справедливо неравенство [math] B(T'') \lt B(T) [/math]. Согласно лемме (1), [math]x[/math] и [math]y[/math] без потери общности можно считать дочерними элементами одного и того же узла. Пусть дерево [math]T'''[/math] получено из дерева [math]T''[/math] путем замены элементов [math]x[/math] и [math]y[/math] листом [math]z[/math] с частотой [math]f[z] = f[x] + f[y] [/math]. Тогда можно записать:
[math]B(T''') = B(T'') - f[x] - f[y] \lt B(T) - f[x] -f[y] = B(T')[/math],

что противоречит предположению о том, что дерево [math]T'[/math] представляет оптимальный префиксный код для алфавита [math]C'[/math]. Таким образом, дерево [math]T[/math] должно представлять оптимальный префиксный код для алфавита [math]C[/math].
[math]\triangleleft[/math]
Теорема:
Процедура Huffman дает оптимальный префиксный код.
Доказательство:
[math]\triangleright[/math]
Справедливость теоремы непосредственно следует из лемм (1) и (2)
[math]\triangleleft[/math]

Литература

  • Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ — 2-е изд. — М.: «Вильямс», 2007. — С. 1296. — ISBN 5-8489-0857-4