NP-полнота задачи о независимом множестве — различия между версиями
м (→Задача о независимом множестве является NP-трудной) |
(→Формулировка) |
||
Строка 1: | Строка 1: | ||
==Формулировка== | ==Формулировка== | ||
Пусть задан неориентированный граф <math>G</math> и натуральное число <math>k</math>. '''Задача о независимом множестве(IND)''' решает вопрос о том, содержит ли граф <math>G</math> подграф <math>H</math> размером <math>k</math>, никакая пара вершин в котором не соединена ребром. | Пусть задан неориентированный граф <math>G</math> и натуральное число <math>k</math>. '''Задача о независимом множестве(IND)''' решает вопрос о том, содержит ли граф <math>G</math> подграф <math>H</math> размером <math>k</math>, никакая пара вершин в котором не соединена ребром. | ||
+ | |||
==Доказательство NP-полноты== | ==Доказательство NP-полноты== | ||
Для доказательства NP-полноты задачи о независимом множестве покажем, что она является NP-трудной и принадлежит классу NP. | Для доказательства NP-полноты задачи о независимом множестве покажем, что она является NP-трудной и принадлежит классу NP. |
Версия 15:51, 19 марта 2010
Содержание
Формулировка
Пусть задан неориентированный граф
и натуральное число . Задача о независимом множестве(IND) решает вопрос о том, содержит ли граф подграф размером , никакая пара вершин в котором не соединена ребром.Доказательство NP-полноты
Для доказательства NP-полноты задачи о независимом множестве покажем, что она является NP-трудной и принадлежит классу NP.
Задача о независимом множестве является NP-трудной
Для доказательства этого сведем по Карпу задачу
к нашей:
Пусть задана булева формула в
, в которой скобок. Построим для нее соответствующий граф. Для каждой скобки нарисуем три вершины, соединим их попарно ребрами и подпишем их именами соответствующих переменных. При этом если переменная входит в формулу с отрицанием, отобразим это в графе. Так же соединим ребрами пары вершин вида .Докажем, что формула выполнима тогда и только тогда, когда в соответствующем графе есть независимое множество из
вершин. Пусть формула выполнима, тогда в каждой скобке есть хотя бы одна переменная, принимающая значение “правда” (учитываем отрицание, если оно есть). Выберем соответствующую переменную в качестве вершины в графе. Полученное множество вершин является независимым, так как ребрами соединены только те вершины, которые соответствуют переменным из одной скобки(а мы выбирали только одну переменную из каждой скобки), а так же вершины вида , соответствующие переменные которых не могут одновременно принимать значение “правда”. Пусть теперь в графе есть независимое множество, размера . Тогда в каждой тройке вершин, соответствующих некоторой скобке, выбрана ровно одна вершина. Установим значение соответствующей переменной “правда”(с учетом отрицания). Это можно сделать, так как нет ребер между вершинами вида . Тогда в каждой скобке, будет хотя бы одна переменная, имеющая значение “правда”, значит вся формула будет принимать значение “правда”. Построение по формуле соответствующего графа можно сделать за полиномиальное время.Задача о независимом множестве принадлежит классу NP
В качестве сертификата возьмем набор из
вершин. За время можно проверить, является ли данное множество вершин независимым.