Разрез, лемма о потоке через разрез — различия между версиями
Строка 61: | Строка 61: | ||
Из закона слабой двойственности следует, что <tex>f(S_1,T_1)\leqslant c(S_2,T_2)</tex> для любых двух разрезов <tex>\langle S_1,T_1\rangle</tex> и <tex>\langle S_2,T_2\rangle</tex> в сети <tex>G</tex>, так как <tex>f(S_1,T_1)=|f|=f(S_2,T_2)\leqslant c(S_2,T_2)</tex>. | Из закона слабой двойственности следует, что <tex>f(S_1,T_1)\leqslant c(S_2,T_2)</tex> для любых двух разрезов <tex>\langle S_1,T_1\rangle</tex> и <tex>\langle S_2,T_2\rangle</tex> в сети <tex>G</tex>, так как <tex>f(S_1,T_1)=|f|=f(S_2,T_2)\leqslant c(S_2,T_2)</tex>. | ||
Значит, если расположить все величины потоков и разрезов на оси OX, то у потоков с разрезами может быть максимум 1 точка пересечения. | Значит, если расположить все величины потоков и разрезов на оси OX, то у потоков с разрезами может быть максимум 1 точка пересечения. | ||
− | Очевидно, что эта точка определяет максимальный поток среди всех потоков и минимальный разрез среди всех разрезов сети <tex>G</tex>. | + | Очевидно, что эта точка определяет максимальный поток среди всех потоков и минимальный разрез среди всех разрезов сети <tex>G</tex>.}} |
− | [[Файл:разрезы.png|мини|слева|600x300px| Среди всех разрезов сети разрез с минимальной пропускной способностью определяет максимальный поток в сети. ]] | + | |
− | + | ||
+ | [[Файл:разрезы.png|мини|слева|600x300px| Среди всех разрезов сети разрез с минимальной пропускной способностью определяет максимальный поток в сети. ]] | ||
+ | |||
+ | {| class="wikitable" style="text-align:center" width="75%" | ||
+ | |+ style="caption-side:bottom; "|''Минимальны разрез — 1 с пропускной способностью 60'' | ||
+ | | Разрез | ||
+ | |"Разрезанные" ребра | ||
+ | |||
+ | | Пропускная способность | ||
+ | |- | ||
+ | | style="text-align:left;" | 1 | ||
+ | | style="text-align:right;" | (1,2),(1,3),(1,4) | ||
+ | | style="text-align:right;" | 10+30+20=60 | ||
+ | |- | ||
+ | | style="text-align:left;" | 2 | ||
+ | | style="text-align:right;" | (1,3),(1,4),(2,3),(2,5) | ||
+ | | style="text-align:right;" | 30+10+40+30=110 | ||
+ | |- | ||
+ | | style="text-align:left;" | 3 | ||
+ | | style="text-align:right;" | (2,5),(3,5),(4,5) | ||
+ | | style="text-align:right;" | 30+20+20=70 | ||
+ | |} | ||
== Источники информации == | == Источники информации == |
Версия 12:55, 15 декабря 2015
Определение: |
Определение: |
Пропускная способность разреза (англ. capacity of the cut) | обозначается и вычисляется по формуле: .
Определение: |
Поток в разрезе (англ. flow in the cut) | обозначается и вычисляется по формуле: .
Определение: |
Минимальным разрезом (англ. minimum cut) называется разрез с минимально возможной пропускной способностью |
Лемма (о величине потока): |
Пусть — разрез в . Тогда . |
Доказательство: |
|
Лемма (закон слабой двойственности потока и разреза): |
Пусть — разрез в . Тогда . |
Доказательство: |
, из-за ограничений пропускных способностей . |
Лемма (о максимальном потоке и минимальном разрезе): |
Если , то поток — максимален, а разрез — минимален. |
Доказательство: |
Из закона слабой двойственности следует, что Очевидно, что эта точка определяет максимальный поток среди всех потоков и минимальный разрез среди всех разрезов сети для любых двух разрезов и в сети , так как . Значит, если расположить все величины потоков и разрезов на оси OX, то у потоков с разрезами может быть максимум 1 точка пересечения. . |
Разрез | "Разрезанные" ребра | Пропускная способность |
1 | (1,2),(1,3),(1,4) | 10+30+20=60 |
2 | (1,3),(1,4),(2,3),(2,5) | 30+10+40+30=110 |
3 | (2,5),(3,5),(4,5) | 30+20+20=70 |
Источники информации
- Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.)
- Википедия: Разрез графа
- Википедия: Разрез графа (англ.)